Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
1520
1
avatar



The height of the water at a pier on a certain day can be modeled by this formula, where h is the height in feet and t is the time in hours after midnight. When is the first time the height of the water reaches 6 feet? (Hint: Substitute 6 for h and find t. Convert the value you find for t to hours and minutes. For example, 5.5 represents 5:30 am.)









 


A) 1:14 am




 




 


B) 4:25 pm




 




 


C) 3:47 am




 




 


D) 2:12 am




 






 

 Oct 22, 2014

Best Answer 

 #1
avatar+23254 
+10

6  =  4.8sin[ (π/6)(t + 3.5) ] + 9

-3  =  4.8sin[ (π/6)(t + 3.5) ]                     subtract 9

-0.625  =  sin[ (π/6)(t + 3.5) ]                    divide by 4.8

-.675  =  (π/6)(t + 3.5)                               invserse sin

-.675 radians will be equivalent to 5.608 radians     2π - .675

For sin, -.675 radians is also equaivalent to 3.817 radians               π +.675

Using 3.817  =   (π/6)(t + 3.5)     

22.902  =  π(t + 3.5)                             multiply by 6                       

7.29  =  t + 3.5                                     divide by π

3.79  =  t                                              subtract 3.5

.79 x 60  =  47   --->  3:47 a.m.

 Oct 22, 2014
 #1
avatar+23254 
+10
Best Answer

6  =  4.8sin[ (π/6)(t + 3.5) ] + 9

-3  =  4.8sin[ (π/6)(t + 3.5) ]                     subtract 9

-0.625  =  sin[ (π/6)(t + 3.5) ]                    divide by 4.8

-.675  =  (π/6)(t + 3.5)                               invserse sin

-.675 radians will be equivalent to 5.608 radians     2π - .675

For sin, -.675 radians is also equaivalent to 3.817 radians               π +.675

Using 3.817  =   (π/6)(t + 3.5)     

22.902  =  π(t + 3.5)                             multiply by 6                       

7.29  =  t + 3.5                                     divide by π

3.79  =  t                                              subtract 3.5

.79 x 60  =  47   --->  3:47 a.m.

geno3141 Oct 22, 2014

1 Online Users