Prove the Identity
4cot(4x)= 2cot(2x)-2tan(2x)
Any help would be much appreciated
Prove the Identity 4cot(4x)= 2cot(2x)-2tan(2x)
\\\small{\text{ If $ t = \tan{(2x)} $ than $ \cot(4x)=\frac{1-t^2}{2t} $ and $ \cot{(2x)}=\frac{1}{t}$ . } $\\$ \small{\text{ So $ 4* ( \frac{1-t^2}{2t} ) = 2\frac{1}{t} - 2t $ or $ \frac{1-t^2}{t} = \frac{1}{t} - t = \frac{1-t^2}{t} $ }
Since tan(2x) = [2tan(x)] / [1 - tan²(x)]
---> cot(2x) = [1 - tan²(x)] / [2tan(x)]
---> cot(4x) = [1 - tan²(2x)] / [2tan(2x)]
---> 4cot(4x) = 2[1 - tan²(2x)] / [tan(2x)]
= 2[ 1 - ( 2tan(x) / [1 - tan²(x)] )² ] / [ 2tan(x) / (1 - tan²(x) ) ]
= 2 / [ 2tan(x) / ( 1 - tan²(x) ) ] - 2( 2tan(x) / [1 - tan²(x)] )² /[ 2tan(x) / ( 1 - tan²(x) ) ]
= 2 · ( 1 - tan²(x) ) / 2tan(x) - 2( 2tan(x) / [1 - tan²(x)] )² · ( 1 - tan²(x) ) / ( 2tan(x) )
= ( 1 - tan²(x) ) / tan(x) - 2( 2tan(x) / [1 - tan²(x)] )
= ( 1 - tan²(x) ) / tan(x) - ( 4tan(x) / [1 - tan²(x)] )
= 2cot(2x) - 2tan(2x)
----------------------------------------------------
Because:
2cot(2x) = [1 - tan²(x)] / [tan(x)]
2tan(2x) = [4tan(x)] / [1 - tan²(x)]
4cot(4x)= 2cot(2x)-2tan(2x)
4cos(4x)/sin(4x) =
4[cos2(2x) - sin2(2x) ] / [(2cos(2x)sin(2x)] =
2 [( cos2(2x)/cos(2x)sin(2x) ) - sin2(2x)/cos(2x)sin(2x) ] =
2[ cos(2x)/sin(2x) - sin(2x)/cos(2x)]
2 [cot(2x) - tan(2x) ] =
2cot(2x) - 2tan(2x)
And the left side = the right side
Prove the Identity 4cot(4x)= 2cot(2x)-2tan(2x)
\\\small{\text{ If $ t = \tan{(2x)} $ than $ \cot(4x)=\frac{1-t^2}{2t} $ and $ \cot{(2x)}=\frac{1}{t}$ . } $\\$ \small{\text{ So $ 4* ( \frac{1-t^2}{2t} ) = 2\frac{1}{t} - 2t $ or $ \frac{1-t^2}{t} = \frac{1}{t} - t = \frac{1-t^2}{t} $ }