To find the derivative of u = sin(2x), we need to use the chain rule: u' = cos(2x)·2 ---> u' = 2cos(2x)
Similarly, v = cos(2x) ---> v' = -sin(2x)·2 ---> v' = -2sin(2x)
To find the derivative of y = sin(2x)·cos(2x), we need to use the product rule: y = u·v ---> y' = u·v' + v·u'
y' = sin(2x)·-2sin(2x) + cos(2x)·2cos(2x) ---> y' = -2sin²(2x) +2cos²(2x)
|y'| = |-2sin²(2x) +2cos²(2x)| = 2|cos²(2x) - sin²(2x)|