Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
841
1
avatar

what is the inverse of : g(t)=-(8\27)t to the third power

 Dec 11, 2014

Best Answer 

 #1
avatar+23254 
+5

g(t)  =  -(8/27)t³

Replace 'g(t)' with 't', and 't' with 'g-1(t)':

--->   t  =  -(8/27)[g-1(t)]³

Now, solve for g-1(t):

  --  Divide both sides by -(8/27)         --->   -(27/8)t  =  [g-1(t)]³

  --  Find the cube root of both sides    --->  -3/2·t1/3  =  g-1(t)

--->  g-1(t)  =  -3/2·t1/3 

 Dec 11, 2014
 #1
avatar+23254 
+5
Best Answer

g(t)  =  -(8/27)t³

Replace 'g(t)' with 't', and 't' with 'g-1(t)':

--->   t  =  -(8/27)[g-1(t)]³

Now, solve for g-1(t):

  --  Divide both sides by -(8/27)         --->   -(27/8)t  =  [g-1(t)]³

  --  Find the cube root of both sides    --->  -3/2·t1/3  =  g-1(t)

--->  g-1(t)  =  -3/2·t1/3 

geno3141 Dec 11, 2014

2 Online Users

avatar
avatar