Write the function in the form f(x) = (x − k)q(x) + r for the given value of k. f(x) = x3 + 5x2 − 3x − 22, k = sqrt(3)
Demonstrate that
f(k) = r.
Write the function in the form f(x) = (x − k)q(x) + r for the given value of k.
f(x) = x3 + 5x2 − 3x − 22,
k = √3
We need to divide:
x3+5x2−3x−22(x−√3)=x2+(5+√3)x+5√3+−7x−√3|⋅(x−√3)x3+5x2−3x−22=(x−√3)⋅[ x2+(5+√3)x+5√3 ]+(x−√3)⋅[ −7x−√3 ]x3+5x2−3x−22=(x−√3)⋅[ x2+(5+√3)x+5√3 ]⏟=q(x)−7⏟=r
f(x)÷(x−√3)=f(x)÷((x2−3)÷(x+√3))=f(x)÷(x2−3)×(x+√3)
We need to get f(x) into the form (x−√3)q(x)+r so we need to find q(x) and r
First we need to divide x^3 + 5x^2 - 3x - 22 by x^2-3
Quotient = x Remainder = -22
So that f(x)x2−3=x−22x2−3
Then multiply this to x+sqrt3
(x−22x2−3)(x+√3)
=x2+√3x−22(x+√3)x2−3
=x2+√3x−22x−√3
There we have found q(x) and r
q(x) = x^2 + sqrt3 x r = -22
Write the function in the form f(x) = (x − k)q(x) + r for the given value of k.
f(x) = x3 + 5x2 − 3x − 22,
k = √3
We need to divide:
x3+5x2−3x−22(x−√3)=x2+(5+√3)x+5√3+−7x−√3|⋅(x−√3)x3+5x2−3x−22=(x−√3)⋅[ x2+(5+√3)x+5√3 ]+(x−√3)⋅[ −7x−√3 ]x3+5x2−3x−22=(x−√3)⋅[ x2+(5+√3)x+5√3 ]⏟=q(x)−7⏟=r