Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
840
2
avatar

(x+8)(x+2)=279

math algebra
 Aug 25, 2014

Best Answer 

 #2
avatar+26396 
+5

\boxed{(x+8)(x+2)=279}  \\  \hline   \begin{array}{rcl}   x^2+2x+8x+16&=&279\\  x^2+10x-279+16&=&0\\  x^2+10x-263&=&0  \end{array}  \hline

x_{1,2}=  \dfrac{  -10\pm\sqrt{10^2-4(-263)}  }  {2} \\\\  x_{1,2}=-5\pm\sqrt{25+263} \\  x_{1,2}=-5\pm\sqrt{288} \\  x_{1,2}=-5\pm\sqrt{144*2} \\  x_{1,2}=-5\pm12\sqrt{2} \\  }  \boxed{  x_1 = -5+12\sqrt{2} = 11.9705627485 \qquad x_2 = -5-12\sqrt{2} = -21.9705627485}

.
 Aug 25, 2014
 #1
avatar+33654 
+5

This can be solved in the Equations part of the calculator on the home page of this site.

(x+8)×(x+2)=279{x=3×2(52)5x=3×2(52)5}{x=21.9705627484771406x=11.9705627484771406}

 Aug 25, 2014
 #2
avatar+26396 
+5
Best Answer

\boxed{(x+8)(x+2)=279}  \\  \hline   \begin{array}{rcl}   x^2+2x+8x+16&=&279\\  x^2+10x-279+16&=&0\\  x^2+10x-263&=&0  \end{array}  \hline

x_{1,2}=  \dfrac{  -10\pm\sqrt{10^2-4(-263)}  }  {2} \\\\  x_{1,2}=-5\pm\sqrt{25+263} \\  x_{1,2}=-5\pm\sqrt{288} \\  x_{1,2}=-5\pm\sqrt{144*2} \\  x_{1,2}=-5\pm12\sqrt{2} \\  }  \boxed{  x_1 = -5+12\sqrt{2} = 11.9705627485 \qquad x_2 = -5-12\sqrt{2} = -21.9705627485}

heureka Aug 25, 2014

2 Online Users

avatar