\boxed{(x+8)(x+2)=279} \\ \hline \begin{array}{rcl} x^2+2x+8x+16&=&279\\ x^2+10x-279+16&=&0\\ x^2+10x-263&=&0 \end{array} \hline
x_{1,2}= \dfrac{ -10\pm\sqrt{10^2-4(-263)} } {2} \\\\ x_{1,2}=-5\pm\sqrt{25+263} \\ x_{1,2}=-5\pm\sqrt{288} \\ x_{1,2}=-5\pm\sqrt{144*2} \\ x_{1,2}=-5\pm12\sqrt{2} \\ } \boxed{ x_1 = -5+12\sqrt{2} = 11.9705627485 \qquad x_2 = -5-12\sqrt{2} = -21.9705627485}
.This can be solved in the Equations part of the calculator on the home page of this site.
(x+8)×(x+2)=279⇒{x=−3×2(52)−5x=3×2(52)−5}⇒{x=−21.9705627484771406x=11.9705627484771406}
\boxed{(x+8)(x+2)=279} \\ \hline \begin{array}{rcl} x^2+2x+8x+16&=&279\\ x^2+10x-279+16&=&0\\ x^2+10x-263&=&0 \end{array} \hline
x_{1,2}= \dfrac{ -10\pm\sqrt{10^2-4(-263)} } {2} \\\\ x_{1,2}=-5\pm\sqrt{25+263} \\ x_{1,2}=-5\pm\sqrt{288} \\ x_{1,2}=-5\pm\sqrt{144*2} \\ x_{1,2}=-5\pm12\sqrt{2} \\ } \boxed{ x_1 = -5+12\sqrt{2} = 11.9705627485 \qquad x_2 = -5-12\sqrt{2} = -21.9705627485}