$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{53}} = {\frac{{\mathtt{11}}}{{\mathtt{3}}}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{1\,335}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{21}}\right)}{{\mathtt{6}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{1\,335}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{21}}\right)}{{\mathtt{6}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.089\: \!608\: \!635\: \!484\: \!241\: \!2}}{i}\right)\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\mathtt{7}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.089\: \!608\: \!635\: \!484\: \!241\: \!2}}{i}\\
\end{array} \right\}$$
.