AnExtremelyLongName

avatar
Nombre de usuarioAnExtremelyLongName
Puntuación658
Membership
Stats
Preguntas 2
Respuestas 338

 #10
avatar+658 
0

Woah! Never touched summation before! I did some reasearch from this website: https://medium.com/i-math/the-binomial-theorem-explained-6464f41e5268

Let us subsitute in known values

1. \((x+1)^n=\sum\limits_{k=0}^n {n \choose k}x^{n-k}1^k\)

2. \((x+1)^n=\sum\limits_{k=0}^n {n \choose k}x^{n-k}\)

 

I realized that any expansion of (x + 1)n will have coefficients in the nth row in pascal's triangle. I think that means the variable is x(n-k).

....

So in other words I have no idea but for some reason x(n-k) is working.