A = (-1, 6) B = (4, 5) C = (-3, -4)
Use the distance formula to find the distance of each side: d = √[ (x2 - x1)² + (y2 - y1)² ]
AB: (x1, y1) = (-1, 6) (x2, y2) = (4, 5) ---> d = √[ (4 - -1)² + (5 - 6)² ]
---> d = √[ (5)² + (-1)² ] ---> d = √( 25 + 1) ---> d = √26
BC: (x1, y1) = (4, 5) (x2, y2) = (-3, -4) ---> d = √[ (-3 - 4)² + (-4 - 5)² ]
---> d = √[ (-7)² + (-9)² ] ---> d = √( 49 + 81) ---> d = √130
AC: (x1, y1) = (-1, 6) (x2, y2) = (-3, -4) ---> d = √[ (-3 - -1)² + (-4 - 6)² ]
---> d = √[ (-2)² + (-10)² ] ---> d = √( 4 + 100) ---> d = √104
Since AB² + AC² = BC², this is a right triangle with sides AB and AC.
To find the area: Area = ½ · AB · AC = ½ · √26 · √104 = ½ · √2704 = ½ · 52 = 26