geno3141

avatar
Nombre de usuariogeno3141
Puntuación23252
Membership
Stats
Preguntas 1
Respuestas 7089

 #2
avatar+23252 
+5

I disagree with CPhill's answer because (using his diagram) the distancce from AB to CD must be measured on a perpendicular drawn from AB to CD and not just the horizontal line between the two points.

However, I don't have an easy way to find this.

I propose:

1) drawing a perpendicular line from point A to line CD;

2) finding the point where these two lines intersect; and

3) finding the distance from point A to this point of intersection.

Part 1: a perpendicular line from point A to line CD will have a slope that is the negative reciprocal of line AB.

   ---  Line AB has slope:  -4/(4√3) =  -1/√3   --->   so a line perpendicular to AB will have slope √3.

   ---   The equation of the lne through point A = (8,0) with slope √3 is:  (use point-slope form)

                 y - 0  =  √3(x - 8)   --->   y  =  √3x -8√3   --->   √3x - y  =  8√3 

Part 2: the equation of CD is:  using slope = -1/√3 and point C = (20,0):

   ---   y - 0  =  (-1/√3)(x - 20)   --->   √3y  =  -1(x - 20)   --->   √3y  =  -x + 20   --->   x + √3y  =  20

   ---   Putting these two equation together:      x + √3y  =  20                    --->     x + √3y  =  20

                                                                     √3x - y  =  8√3   --->   x √3   --->   3x - √3y  =  24

                                Adding down:                                                                          4x           =  44

                                Dividing by 4:                                                                                     x  =  11

           Substituting 11 for x into the equation:  x + √3y  =  20  --->   y  =  3√3

Part 3: finding the distance from the point (8,0) to the point (11, 3√3) by using the distance formula:

            distance  =  √( (11 - 8)² + (3√3 - 0)² )  =  √( (3)² + (3√3)² )  =  √( 9 + 27)  =  √36  =  6.

I believe that the answer is 6.

29 nov 2014