hectictar

avatar
Nombre de usuariohectictar
Puntuación9467
Membership
Stats
Preguntas 10
Respuestas 3005

 #3
avatar+9467 
+3

We can use the law of sines:

 

\(\begin{array}{rcl} \frac{\sin A}{a}&\,=\,&\frac{\sin B}{b}\\~\\ \frac{\sin(50°)}{3}&\,=\,&\frac{\sin B}{2}\\~\\ 2\cdot\frac{\sin(50°)}{3}&\,=\,&\sin B\\~\\ \frac{2}{3}\sin(50°)&=\,&\sin B \end{array} \\ \ \\~\\ B\approx30.71°\quad\text{or}\quad B\approx149.29° \)

 

There are infinitely many values of B that produce the same sin value, but we only want to consider those

that are in the interval  (0, 180°)  because no angle in a triangle can have a measure outside that interval.

 

This is how we find those two solutions:

 

\(B\,=\,\arcsin(\frac{2}{3}\sin(50°))\qquad\text{or}\qquad B\,=\,180°-\arcsin(\frac{2}{3}\sin(50°))\)

 

But in this case,  B ≈ 149.29° can't be a solution because we already have an angle that is 50°,  and

 

149.29° + 50°  >  180°

 

So we know  B ≈ 30.71°  is the only solution for this problem. So there is only one possible triangle.

 

Now we can find the measure of angle  C .

 

C  =  180° - A - B  ≈  180° - 50° - 30.71°  ≈  99.29°

 

All we are missing is the length of side c. We can find it using the law of cosines.

 

c2  =  a2 + b2 - 2ab cos C

c2  ≈  32 + 22 - 2(3)(2) cos( 99.29° )

c2  ≈  13 - 12 cos( 99.29° )                  c  is a length, so take the positive sqrt of both sides

c  ≈  √[ 13 - 12 cos( 99.29° ) ]              Plug this into a calculator

c  ≈  3.865

 

Now we have found:

B  ≈  30.71°

C  ≈  99.29°

c  ≈  3.865

16 may 2019
 #1
avatar+9467 
+4
15 may 2019
 #1
avatar+9467 
+3

Let's get the equation into the form

 

(x - h)2 + (y - k)2  =  r2     where the point  (h, k)  is the center of the circle and  r  is the radius.

 

9x2 - 18x + 9y2 + 36y + 44  =  0

                                                         Subtract  44  from both sides of the equation

9x2 - 18x + 9y2 + 36y  =  -44

                                                         Divide both sides by  9

x2 - 2x + y2 + 4y  =  - \(\frac{44}{9}\)

                                                         Add  1  and add  4  to both sides to complete the squares on the left side

 

x2 - 2x + 1  +  y2 + 4y + 4   =   - \(\frac{44}{9}\) + 1 + 4

                                                                         Factor both perfect square trinomials on the left side

(x - 1)2  +  (y + 2)2   =   - \(\frac{44}{9}\) + 1 + 4

                                                                         Get a common denominator to combine  - \(\frac{44}{9}\) + 1 + 4

(x - 1)2  +  (y + 2)2   =   - \(\frac{44}{9}\) + \(\frac99\) + \(\frac{36}{9}\)

 

(x - 1)2  +  (y + 2)2   =   \(\frac19\)

 

Now it is in the form     (x - h)2 + (y - k)2  =  r2     and we can see that...

 

r2  =  \(\frac19\)

                  The radius is positive so take the positive sqrt of both sides

r  =  \(\frac13\)

.
15 may 2019