heureka

avatar
Nombre de usuarioheureka
Puntuación26379
Membership
Stats
Preguntas 17
Respuestas 5678

 #5
avatar+26379 
+1

Determine all positive integers
\(k \le 2000 \)  
for which
\(x^4+k\)
can be factored into two distinct trinomial factors with integer coefficients.

 

\(\text{All four roots of $x^4+k$ are complex numbers, because $k$ is a positive integer} \\ \text{The complex numbers are conjugation in pairs :} \)

 

\(\begin{array}{|rcll|} \hline x^4+k &=& (x-x_1)(x-x_2)(x-x_3)(x-x_4) \quad | \quad x_1,x_2,x_3,x_4 \in C \\ && x_1 = a+bi \\ && x_2 = a-bi \\ && x_3 = u+vi \\ && x_4 = u-vi \\ x^4+k &=& \Big(x-(a+bi)\Big) \Big(x-(a-bi)\Big) \Big(x-(u+vi)\Big) \Big(x-(u-vi)\Big) \\ &=& \Big((x-a)-bi\Big) \Big((x-a)+bi)\Big) \Big((x-u)-vi)\Big) \Big((x-u)+vi)\Big) \\ &=& \Big((x-a)^2-b^2i^2\Big) \Big((x-u)^2-v^2i^2)\Big) \quad | \quad i^2=-1\\ &=& \Big((x-a)^2+b^2\Big) \Big((x-u)^2+v^2)\Big) \\ &=& \Big(x^2-2ax+(a^2+b^2)\Big) \Big(x^2-2ux +(u^2+v^2)\Big) \quad | \quad \text{trinomial factors}\\ &=& x^4-2ux^3+(u^2+v^2)x^2-2ax^3+4aux^2-2ax(u^2+v^2) \\ && +(a^2+b^2)x^2-2u(a^2+b^2)x+(a^2+b^2)(u^2+v^2) \\ &=& x^4 -x^3\underbrace{(2u+2a)}_{=0} +x^2\underbrace{(u^2+v^2+a^2+b^2+4au)}_{=0} \\ && -x\underbrace{\Big(2a(u^2+v^2)+2u(a^2+b^2)\Big)}_{=0} +\underbrace{(a^2+b^2)(u^2+v^2)}_{=k} \\ && \begin{array}{|lrcll|} \hline 1. & 2u+2a &=& 0 \quad & | \quad : 2 \\ & u+a &=& 0 \\ & \mathbf{u} &\mathbf{=}& \mathbf{-a} \quad & | \quad \text{or} \quad \mathbf{u^2=a^2} \\ \hline \end{array}\\ &=& x^4 +x^2\underbrace{(a^2+v^2+a^2+b^2-4a^2)}_{=0} \\ && -x\underbrace{\Big(2a(a^2+v^2)-2a(a^2+b^2)\Big)}_{=0} +\underbrace{(a^2+b^2)(a^2+v^2)}_{=k} \\ &=& x^4 +x^2\underbrace{(v^2+b^2-2a^2)}_{=0} -x\underbrace{(2av^2-2ab^2)}_{=0} +\underbrace{(a^2+b^2)(a^2+v^2)}_{=k} \\ && \begin{array}{|lrcll|} \hline 2. & 2av^2-2ab^2 &=& 0 \quad & | \quad : 2a \\ & v^2-b^2 &=& 0 \\ & \mathbf{v^2 } &\mathbf{=}& \mathbf{b^2 } \\ \hline \end{array}\\ &=& x^4 +x^2\underbrace{(b^2+b^2-2a^2)}_{=0} +\underbrace{(a^2+b^2)(a^2+b^2)}_{=k} \\ &=& x^4 +x^2\underbrace{(2b^2-2a^2)}_{=0} +\underbrace{(a^2+b^2)(a^2+b^2)}_{=k} \\ && \begin{array}{|lrcll|} \hline 3. & 2b^2-2a^2 &=& 0 \quad & | \quad : 2 \\ & b^2-a^2 &=& 0 \\ & \mathbf{b^2 } &\mathbf{=}& \mathbf{a^2 } \\ \hline \end{array}\\ &=& x^4 +\underbrace{(a^2+a^2)(a^2+a^2)}_{=k} \\ &=& x^4 +\underbrace{(2a^2)(2a^2)}_{=k} \\ &=& x^4 +\underbrace{4a^4}_{=k} \\ \hline && \huge{k=4a^4} \\ \hline \end{array}\)

 

\(\text{trinomial factors:}\)

\(\begin{array}{|rcll|} \hline && \Big(x^2-2ax+(a^2+b^2)\Big) \Big(x^2-2ux +(u^2+v^2)\Big) \\ && \boxed{ b^2 = a^2, \quad u^2 = a^2, \quad v^2=b^2=a^2, \quad u = -a } \\ &=& ( x^2-2ax+ 2a^2)(x^2+2ax + 2a^2) \\ \hline \end{array} \)

 

Solutions:

\(\begin{array}{|r|r|c|c|} \hline a \in N &k= 4a^4 & k \le 2000 & ( x^2-2ax+ 2a^2)(x^2+2ax + 2a^2) \\ \hline 1 & 4 & \checkmark & ( x^2-2x+ 2)(x^2+2x + 2) \\ 2 & 64 & \checkmark & ( x^2-4x+ 8)(x^2+4x + 8) \\ 3 & 324 & \checkmark & ( x^2-6x+ 18)(x^2+6x + 18) \\ 4 & 1024 & \checkmark & ( x^2-8x+ 32)(x^2+8x + 32) \\ 5 & 2500 & \gt 2000 \text{ no solution } \\ \ldots & \ldots & \gt 2000 \text{ no solution } \\ \hline \end{array}\)

 

All positive integers k  are 1,2,3,4

 

laugh

27 jul 2018
 #1
avatar+26379 
+2

A sequence of 2016 terms is formed as follows: The first two terms are equal to 3, from the 3rd term onwards, each consecutive term is formed by finding the sum of the previous two terms.

If each of the terms of the sequence 3,3,6,9....are now devided by 2,

and the remainders are added,

what will the sum of the first 2016 remainders be?

 

\(\begin{array}{|rcll|} \hline && \text{Let } \mathcal{F} \text{ are the Fibonacci numbers }\\\\ \mathcal{F}_1 &=& 1\\ \mathcal{F}_2 &=& 1\\ \mathcal{F}_3 &=& 2\\ \mathcal{F}_4 &=& 3\\ \mathcal{F}_5 &=& 4\\ \mathcal{F}_6 &=& 5\\ \mathcal{F}_7 &=& 13\\ \mathcal{F}_8 &=& 21\\ \mathcal{F}_9 &=& 34\\ \mathcal{F}_{10} &=& 55\\ \mathcal{F}_{11} &=& 89\\ \mathcal{F}_{12} &=& 144\\ \ldots \\ \hline \end{array} \)

 

The sequence:

\(\begin{array}{|rccr|l|} \hline a_1 &=& &=& 1\cdot 3 \\ a_2 &=& &=& 1\cdot 3 \\ a_3 &=& 1\cdot 3 + 1\cdot 3 &=& 2\cdot 3 \\ a_4 &=& 1\cdot 3 + 2\cdot 3 &=& 3\cdot 3 \\ a_5 &=& 2\cdot 3 + 3\cdot 3 &=& 5\cdot 3 \\ a_6 &=& 3\cdot 3 + 5\cdot 3 &=& 8\cdot 3 \\ a_7 &=& 5\cdot 3 + 8\cdot 3 &=& 13\cdot 3 \\ a_8 &=& 8\cdot 3 + 13\cdot 3 &=& 21\cdot 3 \\ a_9 &=& 13\cdot 3 + 21\cdot 3 &=& 34\cdot 3 \\ \ldots \\ a_n &=& && \mathcal{F}_{n} \cdot 3 \\ \hline \end{array} \)

 

\(\begin{array}{|r|rcl|c|} \hline \text{cycle} && && \text{remainder after divided by } 2 \\ \hline 1 & a_1 &=& 1\cdot 3 & 1 \\ 1 & a_2 &=& 1\cdot 3 & 1 \\ 1 & a_3 &=& 2\cdot 3 & 0 \\ \hline 2 & a_4 &=& 3\cdot 3 & 1 \\ 2 & a_5 &=& 5\cdot 3 & 1 \\ 2 & a_6 &=& 8\cdot 3 & 0 \\ \hline 3 & a_7 &=& 13\cdot 3 & 1 \\ 3 & a_8 &=& 21\cdot 3 & 1 \\ 3 & a_9 &=& 34\cdot 3 & 0 \\ \hline \ldots \\ \hline 672 & a_{2014} &=& \mathcal{F}_{2014} \cdot 3 & 1 \\ 672 & a_{2015} &=& \mathcal{F}_{2015} \cdot 3 & 1 \\ 672 & a_{2016} &=& \mathcal{F}_{2016} \cdot 3 & 0 \\ \hline &&&& \text{sum }=672*2 = 1344 \\ \hline \end{array} \)

 

The sum of the first 2016 remainders will be 1344

 

laugh

25 jul 2018
 #2
avatar+26379 
+1

Let  S = 1^2/(1.3) + 2^2/(3.5) + 3^2/(5.7) + 4^2/(7.9) +............+ 500^2/(999.1001).

What is the sum of S?

 

\(\begin{array}{|rcll|} \hline S &=& \dfrac{1^2}{1\cdot 3} + \dfrac{2^2}{3\cdot 5} + \dfrac{3^2}{5\cdot 7} + \dfrac{4^2}{7\cdot 9} + \ldots + \dfrac{500^2}{999\cdot 1001} \\\\ S &=& \sum \limits_{n=1}^{500} \dfrac{n^2}{(2n-1)(2n+1)} \\\\ && \boxed{\dfrac{1}{(2n-1)(2n+1)}=\dfrac12\cdot \left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right)} \\\\ S &=& \sum \limits_{n=1}^{500} n^2\dfrac12 \left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right) \\\\ S &=& \dfrac12 \sum \limits_{n=1}^{500} n^2 \left( \dfrac{1}{2n-1} - \dfrac{1}{2n+1} \right) \\\\ S &=& \dfrac12 \sum \limits_{n=1}^{500} \left( \dfrac{n^2}{2n-1} - \dfrac{n^2}{2n+1} \right) \\\\ 2S &=& \sum \limits_{n=1}^{500} \left( \dfrac{n^2}{2n-1}\right) - \sum \limits_{n=1}^{500} \left( \dfrac{n^2}{2n+1} \right) \\\\ 2S &=& \dfrac{1^2}{1\cdot2-1} + \sum \limits_{n=2}^{500} \left(\dfrac{n^2}{2n-1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{2\cdot 500 + 1} \\\\ 2S &=& 1 + \sum \limits_{n=2}^{500} \left(\dfrac{n^2}{2n-1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{(n+1)^2}{2(n+1)-1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{(n+1)^2}{2n+1}\right) - \sum \limits_{n=1}^{499} \left(\dfrac{n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{(n+1)^2-n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{n^2+2n+1-n^2}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(\dfrac{2n+1}{2n+1}\right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + \sum \limits_{n=1}^{499} \left(1 \right) -\dfrac{500^2}{1001} \\\\ 2S &=& 1 + 499 -\dfrac{500^2}{1001} \\\\ 2S &=& 500-\dfrac{500^2}{1001} \\\\ 2S &=& 500 \cdot \left(1-\dfrac{500}{1001} \right) \\\\ S &=& 250 \cdot \left(\dfrac{1001-500}{1001} \right) \\\\ S &=& \dfrac{250\cdot 501}{1001} \\\\ \mathbf{S} & \mathbf{=} & \mathbf{\dfrac{125250}{1001}} \\ \hline \end{array}\)

 

laugh

25 jul 2018