heureka

avatar
Nombre de usuarioheureka
Puntuación26367
Membership
Stats
Preguntas 17
Respuestas 5678

 #6
avatar+26367 
+11

Ich habe diese Frage als Hausaufgabe bekommen und weiss nicht wie ich sie angehen soll?
Um das Becken eines Schwimmbades zu füllen, hat man drei Wasserhähne zur Verfügung.
Jeder Hahn ist verschieden stark. Und daher schneller oder weniger.
Wenn nur Hahn A und Hahn B offen sind dauert es 70 Minuten beziehungsweise 1 Sunde und 10 Minuten.
Wenn nur Hahn A und Hahn C offen sind dauert es 50 Minuten.
Wenn nur Hahn B und Hahn C offen sind dauert es 56 Minuten.
Wie lange dauert es bis das Becken voll ist wenn man alle Hähne aufdreht?

 

\(\text{Hahn A: $~\dfrac{1}{A}$ in der Einheit $\left[ \dfrac{\text{Becken}} {\text{Min.}} \right] $ } \\ \text{Hahn B: $~\dfrac{1}{B}$ in der Einheit $\left[ \dfrac{\text{Becken}}{\text{Min.}} \right] $ } \\ \text{Hahn C: $~\dfrac{1}{C}$ in der Einheit $\left[ \dfrac{\text{Becken}}{\text{Min.}} \right] $ }\)

 

\(\small{ \begin{array}{|lrcll|} \hline (1) & \dfrac{1}{A} + \dfrac{1}{B} &=& \dfrac{1~\text{Becken}} {70~ \text{Min.}} \\ (2) & \dfrac{1}{A} + \dfrac{1}{C} &=& \dfrac{1~\text{Becken}} {50~ \text{Min.}} \\ (3) & \dfrac{1}{B} + \dfrac{1}{C} &=& \dfrac{1~\text{Becken}} {56~ \text{Min.}} \\ \hline (1)+(2)+(3): & \dfrac{1}{A} + \dfrac{1}{B} +\dfrac{1}{A} + \dfrac{1}{C} + \dfrac{1}{B} + \dfrac{1}{C} &=& \dfrac{1~\text{Becken}} {70~ \text{Min.}} +\dfrac{1~\text{Becken}} {50~ \text{Min.}}++\dfrac{1~\text{Becken}} {56~ \text{Min.}} \\\\ & 2\cdot \left( \dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C} \right) &=& \left( \dfrac{1} {70} +\dfrac{1} {50}+\dfrac{1} {56} \right) \dfrac{1~\text{Becken}} {\text{Min.}} \\\\ & 2\cdot \left( \dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C} \right) &=& 0.05214285714 \dfrac{1~\text{Becken}} {\text{Min.}} \\\\ & \dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C} &=& 0.02607142857 \dfrac{1~\text{Becken}} {\text{Min.}} \\\\ & \mathbf{\dfrac{1}{A} + \dfrac{1}{B} + \dfrac{1}{C}} & \mathbf{=} & \mathbf{ \dfrac{1~\text{Becken}} {38.3561643836~\text{Min.}} } \\ \hline \end{array} }\)

 

\(\text{Wenn man alle Hähne aufdreht werden, dauert es $38.3561643836~\text{Min.}\\$oder $ \mathbf{38~\text{Min.}~ 21.4~ \text{Sekunden}}$ }\)

 

laugh

19 nov 2018
 #1
avatar+26367 
+15

Another one of my Triangle Questions

In \(\Delta ABC\), line segments are drawn parallel to each of the sides dividing the triangle into six regions.
The areas of three regions are shown in the figure. What is the area of \(\Delta ABC\)?

 

\(\begin{array}{l} \text{Let Area $A =[ABC] $} \\\\ \text{Let Area $A_4=[E'EP] =a^2 = 4, ~a=2 $}\\ \text{Let Area $A_5=[D'DP] =b^2 = 9, ~b=3 $}\\ \text{Let Area $A_6=[F'FP] =c^2 = 16 ~c=4$} \\\\ \text{Let Area $A_1=[E'AD] $}\\ \text{Let Area $A_2=[D'BF] $}\\ \text{Let Area $A_3=[F'CE] $} \end{array}\)

 

\(\text{The triangles are similar $\\( \triangle ABC \sim \triangle E'EP \sim \triangle D'DP \sim \triangle F'FP \sim \triangle E'AD \sim \triangle D'BF \sim \triangle F'CE )$.} \)

 

The key theorem we apply here is that the ratio of the areas of 2 similar triangles is
the ratio of a pair of corresponding sides squared.

 

\(\begin{array}{|rcll|} \hline \dfrac{A_4}{A} &=& \left(\dfrac{E'P}{CB}\right)^2 \\ \dfrac{A_5}{A} &=& \left(\dfrac{PD}{CB}\right)^2 \\ \hline \dfrac{A_4}{A}\cdot \dfrac{A}{A_5} &=& \dfrac{E'P^2}{CB^2} \cdot \dfrac{CB^2}{PD^2} \\ \dfrac{A_4}{A_5} &=& \dfrac{E'P^2}{PD^2} \\ \dfrac{a^2}{b^2} &=& \dfrac{E'P^2}{PD^2} \\ \dfrac{a}{b} &=& \dfrac{E'P}{PD} \\ \boxed{\dfrac{E'P}{PD}=\dfrac{a}{b} } \\ \hline \end{array} \)

 

\(\begin{array}{|rclcrl|} \hline \dfrac{E'P}{PD} &=& \dfrac{a}{b} && E'P &=& \dfrac{a}{a+b}E'D \\ && && E'D &=& \dfrac{a+b}{a} E'P \\ \dfrac{E'D}{PD} &=& \dfrac{a+b}{a} \cdot \dfrac{E'P}{PD} \\ \dfrac{E'D}{PD} &=& \dfrac{a+b}{a} \cdot \dfrac{a}{b} \\ \boxed{\dfrac{E'D}{PD} = \dfrac{a+b}{b} } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{A_1}{A_5} &=& \left( \dfrac{E'D}{PD} \right)^2 \\ A_1 &=& A_5\left( \dfrac{E'D}{PD} \right)^2 \\ A_1 &=& b^2\left( \dfrac{a+b}{b} \right)^2 \\ \mathbf{A_1} & \mathbf{=} & \mathbf{(a+b)^2} \quad & | \quad A_1 = (2+3)^2=5^2=25 \\ \hline \end{array} \)

 

analogous

\(\begin{array}{|rclcrl|} \hline \dfrac{D'P}{PF} &=& \dfrac{b}{c} && D'P &=& \dfrac{b}{b+c}D'F \\ && && D'F &=& \dfrac{b+c}{b}D'P \\ \dfrac{D'F}{PF} &=& \dfrac{b+c}{b} \cdot \dfrac{D'P}{PF} \\ \dfrac{D'F}{PF} &=& \dfrac{b+c}{b} \cdot \dfrac{b}{c} \\ \boxed{\dfrac{D'F}{PF} = \dfrac{b+c}{c} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{A_2}{A_6} &=& \left( \dfrac{D'F}{PF} \right)^2 \\ A_2 &=& A_6\left( \dfrac{D'F}{PF} \right)^2 \\ A_2 &=& c^2\left( \dfrac{b+c}{c} \right)^2 \\ \mathbf{A_2} & \mathbf{=} & \mathbf{(b+c)^2} \quad & | \quad A_2 = (3+4)^2=7^2=49 \\ \hline \end{array}\)

 

analogous

\(\begin{array}{|rclcrl|} \hline \dfrac{F'P}{PE} &=& \dfrac{c}{a} && F'P &=& \dfrac{c}{a+c}F'E \\ && && F'E &=& \dfrac{a+c}{c}F'P \\ \dfrac{F'E}{PE} &=& \dfrac{a+c}{c} \cdot \dfrac{F'P}{PE} \\ \dfrac{F'E}{PE} &=& \dfrac{a+c}{c} \cdot \dfrac{c}{a} \\ \boxed{\dfrac{F'E}{PE} = \dfrac{a+c}{a} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{A_3}{A_4} &=& \left( \dfrac{F'E}{PE} \right)^2 \\ A_3 &=& A_4\left( \dfrac{F'E}{PE} \right)^2 \\ A_3 &=& a^2\left( \dfrac{a+c}{a} \right)^2 \\ \mathbf{A_3} & \mathbf{=} & \mathbf{(a+c)^2} \quad & | \quad A_3 = (2+4)^2=6^2=36 \\ \hline \end{array} \)


\(\mathbf{A=\ ?}\)

\(\begin{array}{|rcll|} \hline A_1+A_2+A_3 &=& \mathbf{A}+ A_4+A_5 + A_6 \\ 25+49+36 &=& A+ 4+9+16 \\ 110 &=& A + 29 \\ A &=& 110 - 29 \\ \mathbf{A} & \mathbf{=} & \mathbf{81} \\ \hline \end{array}\)

 

laugh

16 nov 2018