Utilizamos cookies para personalizar el contenido y la publicidad y para analizar el acceso a nuestro sitio web. Además, nuestros socios para la publicidad online reciben información pseudónima sobre su uso de nuestra página web. políticas sobre cookies y Políticas de privacidad.
 
+0  
 
0
343
1
avatar

como determinar la diagonal de un rectángulo ?

 19 oct. 2014

Mejor Respuesta  

 #1
avatar+5454 
+9

Usa el teorema de Pitágoras:

$${{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

Por ejemplo:

 

16 es $${\mathtt{a}}$$ y 10 es $${\mathtt{b}}$$. d es la diagonal $${\mathtt{c}}$$.

 

$${{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${{\mathtt{16}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${\mathtt{256}}{\mathtt{\,\small\textbf+\,}}{\mathtt{100}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${\mathtt{356}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${\mathtt{c}} = {\sqrt{{\mathtt{356}}}}$$

 

$${\mathtt{c}} = {\sqrt{{\mathtt{356}}}} \Rightarrow {\mathtt{c}} = {\mathtt{18.867\: \!962\: \!264\: \!113\: \!207\: \!6}}$$

.
 19 oct. 2014
 #1
avatar+5454 
+9
Mejor Respuesta

Usa el teorema de Pitágoras:

$${{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

Por ejemplo:

 

16 es $${\mathtt{a}}$$ y 10 es $${\mathtt{b}}$$. d es la diagonal $${\mathtt{c}}$$.

 

$${{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${{\mathtt{16}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{10}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${\mathtt{256}}{\mathtt{\,\small\textbf+\,}}{\mathtt{100}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${\mathtt{356}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

 

$${\mathtt{c}} = {\sqrt{{\mathtt{356}}}}$$

 

$${\mathtt{c}} = {\sqrt{{\mathtt{356}}}} \Rightarrow {\mathtt{c}} = {\mathtt{18.867\: \!962\: \!264\: \!113\: \!207\: \!6}}$$

kitty<3 19 oct. 2014

23 Usuarios en línea