El triple de un numero entero es igual al duplo de su consecutivo mas el opuesto de seis ¿Cual es el numero?
$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}} = \left[{\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)\right]{\mathtt{\,-\,}}{\mathtt{6}}$$
$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}} = {\mathtt{2}}{\mathtt{\,\times\,}}\left({\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)$$
$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}$$
$${\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}$$
$${\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}} = {\mathtt{0}}$$
$${\mathtt{x}} = -{\mathtt{4}}$$
.