Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
1
1
avatar+194 

Triangle ABC is a 30-60-90 right triangle with right angle at C, angle ABC = 60 degrees, and hypotenuse of length 2. Let P be a point chosen at random inside ABC, and extend ray BP to hit side AC at D. What is the probability that BD < √2?

 Mar 3, 2025
edited by HumenBeing  Mar 3, 2025
 #1
avatar+130466 
+1

BC = 1

AC = sqrt 3

AB = 2

 

Construct a circle at B = (1,0)  with a radius of sqrt 2

The equation of the circle  is   (x -1)^2 + y^2  = 2

To find the intersection of BD and AC  let  x = 0

Then y  = 1

So D =  (x ,y)  = (0, 1)

BD  =  radius of the circle  = sqrt 2

DC  =1

 

The probability that BD < sqrt 2      is       DC / AC   =  1 / sqrt 3 ≈  57.7 %

 

cool cool cool

 Mar 3, 2025
edited by CPhill  Mar 3, 2025

2 Online Users

avatar
avatar