El siguiente diagrama contiene al paralelogramo ABCDABCDA, B, C, D y al triángulo \triangle EFG△EFGtriangle, E, F, G. m\angle BAC=m\angle DCA=m\angle E=90^\circm∠BAC=m∠DCA=m∠E=90 ∘ m, angle, B, A, C, equals, m, angle, D, C, A, equals, m, angle, E, equals, 90, degree m\angle B=m\angle D=m\angle F=31^\circm∠B=m∠D=m∠F=31 ∘ m, angle, B, equals, m, angle, D, equals, m, angle, F, equals, 31, degree ¿Cuál de las igualdades debe ser verdadera? Please choose from one of the following options. \tan(\angle ADC)=\dfrac{AC}{EF}tan(∠ADC)= EF AC tangent, left parenthesis, angle, A, D, C, right parenthesis, equals, start fraction, A, C, divided by, E, F, end fraction \sin(\angle CBA)=\dfrac{DC}{BC}sin(∠CBA)= BC DC sine, left parenthesis, angle, C, B, A, right parenthesis, equals, start fraction, D, C, divided by, B, C, end fraction Ambos Ninguno