Use the calculator here to find out:
$$\underset{\,\,\,\,{\textcolor[rgb]{0.66,0.66,0.66}{\rightarrow {\mathtt{x}}}}}{{solve}}{\left(\begin{array}{l}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{c}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{d}}={\mathtt{0}}\end{array}\right)} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = \left({\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}\right){\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{2}}}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}{\mathtt{\,-\,}}{\frac{\left({\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}\right)}{\left({\mathtt{54}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}\right)}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\frac{\left({\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}\right){\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{2}}}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}{\mathtt{\,-\,}}{\frac{\left({\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}\right)}{\left({\mathtt{54}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}\right)}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,-\,}}{\frac{{\mathtt{b}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}\right)}}\\
{\mathtt{x}} = \left({\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}\right){\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{2}}}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}{\mathtt{\,-\,}}{\frac{\left({\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}\right)}{\left({\mathtt{54}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}\right)}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\frac{\left({\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}\right){\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{2}}}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}{\mathtt{\,-\,}}{\frac{\left({\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}\right)}{\left({\mathtt{54}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}\right)}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,-\,}}{\frac{{\mathtt{b}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}\right)}}\\
{\mathtt{x}} = {\left({\frac{{\sqrt{{\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}\right){\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{2}}}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}{\mathtt{\,-\,}}{\frac{\left({\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}\right)}{\left({\mathtt{54}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}\right)}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\frac{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{d}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{\mathtt{18}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}\right){\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{3}}}{\mathtt{\,-\,}}{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{{\mathtt{c}}}^{{\mathtt{2}}}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}\right)}}{\mathtt{\,-\,}}{\frac{\left({\mathtt{27}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\times\,}}{\mathtt{d}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\times\,}}{\mathtt{a}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\times\,}}{\mathtt{c}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{b}}}^{{\mathtt{3}}}\right)}{\left({\mathtt{54}}{\mathtt{\,\times\,}}{{\mathtt{a}}}^{{\mathtt{3}}}\right)}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,-\,}}{\frac{{\mathtt{b}}}{\left({\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{a}}\right)}}\\
\end{array} \right\}$$
.