Alan

avatar
Nombre de usuarioAlan
Puntuación33666
Membership
Stats
Preguntas 9
Respuestas 8868

 #2
avatar+33666 
+15
16 sept 2014
 #1
avatar+33666 
+5

Let FAB be the force in cable AB and FBC be the force in cable BC.  Let θA be the angle between cable AB and the horizontal and θC be the angle between cable BC and the horizontal.

 

Horizontal force balance

FABcos(θA) = FBCcos(θC)          ...(1)

Vertical force balance

FABsin(θA) = mg + FBCsin(θC)  ...(2)

m = 2000kg; g = 9.81m/s2.

 

We also have that θA = tan-1(5.6/2.2) and θC = tan-1(2.4/5.6)

 

Replace FBC in (2) by using (1)

FABsin(θA) = mg + FABcos(θA)sin(θC)/cos(θC)

Rearrange to get FAB

FAB = mg/(sin(θA) - cos(θA)sin(θC)/cos(θC))

$${\mathtt{FAB}} = {\frac{{\mathtt{2\,000}}{\mathtt{\,\times\,}}{\mathtt{9.81}}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{5.6}}}{{\mathtt{2.2}}}}\right)}\right)}{\mathtt{\,-\,}}{\frac{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{5.6}}}{{\mathtt{2.2}}}}\right)}\right)}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{2.4}}}{{\mathtt{5.6}}}}\right)}\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{2.4}}}{{\mathtt{5.6}}}}\right)}\right)}}}\right)}} \Rightarrow {\mathtt{FAB}} = {\mathtt{25\,347.418\: \!086\: \!936\: \!201\: \!807\: \!8}}$$

FAB ≈ 25.347 kN

 

Substitute this back into (1) to get FBC

FBC = FABcos(θA)/cos(θC)

$${\mathtt{FBC}} = {\frac{{\mathtt{25\,347.418}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{5.6}}}{{\mathtt{2.2}}}}\right)}\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{2.4}}}{{\mathtt{5.6}}}}\right)}\right)}}} \Rightarrow {\mathtt{FBC}} = {\mathtt{10\,083.657\: \!337\: \!858\: \!801\: \!218\: \!7}}$$

FBC ≈ 10.083 kN

15 sept 2014