$${\frac{{\mathtt{14}}}{{{\mathtt{x}}}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\mathtt{9}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{6}}}{{\mathtt{x}}}}{\mathtt{\,-\,}}{\mathtt{3}} = {\frac{{\mathtt{8}}}{{\mathtt{x}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{211}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{15}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{211}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{15}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{1.035\: \!055\: \!936\: \!422\: \!263\: \!3}}\\
{\mathtt{x}} = {\mathtt{0.901\: \!722\: \!603\: \!088\: \!93}}\\
\end{array} \right\}$$
.