heureka

avatar
Nombre de usuarioheureka
Puntuación26376
Membership
Stats
Preguntas 17
Respuestas 5678

 #1
avatar+26376 
+1

​complex roots

\(\begin{array}{|rcll|} \hline w &=& p+2i \\ w^{*} &=& p-2i \\\\ \left[ z-w \right] \left[z-w^{*} \right] &=& z^2+(4+i+qi)z + 20 \\ \left[ z-(p+2i) \right] \left[z-(p-2i) \right] &=& z^2+(4+i+qi)z + 20 \\ \left[ (z-p)-2i) \right] \left[(z-p)+2i) \right] &=& z^2+(4+i+qi)z + 20 \\ (z-p)^2-(2i)^2 &=& z^2+(4+i+qi)z + 20 \\ (z-p)^2+4 &=& z^2+(4+i+qi)z + 20 \\ z^2-2pz+(p^2+4) &=& z^2+\underbrace{(4+i+qi)}_{=-2p}z + \underbrace{20}_{=p^2+4} \\\\ p^2+4 &=& 20 \\ p^2 &=& 16 \\ \mathbf{p} & \mathbf{=} & \mathbf{\pm 4} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline p=4: & 4+i+qi &=& -2p \\ & 4+i+qi &=& -8 \\ & qi &=& -12-i \\ & q &=& \dfrac{-12-i}{i} \\ & q &=& \dfrac{(-12-i)}{i}\cdot \dfrac{i}{i} \\ & q &=& \dfrac{(-12-i)i}{i^2} \quad | \quad i^2 = -1 \\ & q &=& \dfrac{(-12-i)i}{-1} \\ & q &=& (12+i)i \\ & q &=& i^2+12i \\ & \mathbf{q} & \mathbf{=} & \mathbf{-1+12i} \\\\ & w &=& 4+2i \\ & w^* &=& 4-2i \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline p=-4: & 4+i+qi &=& -2p \\ & 4+i+qi &=& 8 \\ & qi &=& 4-i \\ & q &=& \dfrac{4-i}{i} \\ & q &=& \dfrac{(4-i)}{i}\cdot \dfrac{i}{i} \\ & q &=& \dfrac{(4-i)i}{i^2} \quad | \quad i^2 = -1 \\ & q &=& \dfrac{(4-i)i}{-1} \\ & q &=& (i-4)i \\ & q &=& i^2-4i \\ & \mathbf{q} & \mathbf{=} & \mathbf{-1-4i} \\\\ & w &=& -4+2i \\ & w^* &=& -4-2i \\ \hline \end{array}\)

 

The possible values of \(\mathbf{q}\) are \(\mathbf{-1+12i}\) and \(\mathbf{-1-4i}\)

and the quadratic equations are \(\mathbf{z^2-8z+20 = 0}\) and \(\mathbf{z^2+8z+20 = 0}\) .

 

laugh

16 abr 2019
 #2
avatar+26376 
+3

Find all solutions to

\(\large \sqrt[3]{x + 57} - \sqrt[3]{x - 57} = \sqrt[3]{6}\).

 

\(\begin{array}{|rcll|} \hline \sqrt[3]{x + 57} - \sqrt[3]{x - 57} &=& \sqrt[3]{6} \\ \left( \sqrt[3]{x + 57} - \sqrt[3]{x - 57} \right)^3 &=& 6 \\ (x + 57)-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2}-(x-57) &=& 6 \\ 114-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2} &=& 6 \\ 108-3 \sqrt[3]{(x + 57)^2(x - 57)} + 3 \sqrt[3]{(x + 57)(x - 57)^2} &=& 0 \quad | \quad : 3\\ 36- \sqrt[3]{(x + 57)^2(x - 57)} + \sqrt[3]{(x + 57)(x - 57)^2} &=& 0 \\ 36- \sqrt[3]{(x^2 - 57^2)(x + 57)} + \sqrt[3]{(x^2 - 57^2)(x - 57)} &=& 0 \\ 36- \sqrt[3]{x^2 - 57^2} \underbrace{\left(\sqrt[3]{x + 57} - \sqrt[3]{x - 57}\right)}_{=\sqrt[3]{6}} &=& 0 \\ \sqrt[3]{x^2 - 57^2}\sqrt[3]{6} &=& 36 \\ (x^2 - 57^2)\cdot 6 &=& 36^3 \\ x^2 - 57^2 &=& 7776 \\ x^2 &=& 7776 +3249 \\ x^2 &=& 11025 \\ \mathbf{x} &\mathbf{=}& \mathbf{\pm 105} \\ \hline \end{array}\)

 

check \(x=105\):

\(\begin{array}{rcll} \sqrt[3]{105 + 57} - \sqrt[3]{105 - 57} &\overset{?}{=}& \sqrt[3]{6} \\ \sqrt[3]{162} - \sqrt[3]{48} &\overset{?}{=}& 1.81712059283 \\ 5.45136177850 - 3.63424118566 &\overset{?}{=}& 1.81712059283 \\ 1.81712059283 & = & 1.81712059283 \quad \checkmark \\ \end{array}\)

 

 

check \(x=-105\):

\(\begin{array}{rcll} \sqrt[3]{-105 + 57} - \sqrt[3]{-105 - 57} &\overset{?}{=}& \sqrt[3]{6} \\ \sqrt[3]{-48} - \sqrt[3]{-162} &\overset{?}{=}& 1.81712059283 \\ - 3.63424118566 -(-5.45136177850 ) &\overset{?}{=}& 1.81712059283 \\ - 3.63424118566 + 5.45136177850 &\overset{?}{=}& 1.81712059283 \\ 1.81712059283 & = & 1.81712059283 \quad \checkmark \\ \end{array}\)

 

laugh

15 abr 2019
 #4
avatar+26376 
+3

Compute 

\(1 \cdot \dfrac {1}{2} + 2 \cdot \dfrac {1}{4} + 3 \cdot \dfrac {1}{8} + \dots + n \cdot \dfrac {1}{2^n} + \dotsb\)

 

 

\(\text{Let $x = \dfrac{1}{2} \quad|x|<1$ } \)

 

Now we have:  \(\displaystyle s= \sum \limits_{n=1}^{\infty} nx^n \)

 

Let the progression to be summed be put equal to s:

\(s = x+2x^2+3x^3+4x^4+\cdots + nx^n +\cdots\)

 

It is divided by \(x\) and multiplied by \(dx\) then

\(\dfrac{s\ dx}{x} = dx +2x\ dx+3x^2\ dx+4x^3\ dx+\cdots + nx^{n-1}\ dx +\cdots \)

 

and with the integrals taken this equation is found
\(\displaystyle \int \dfrac{s\ dx}{x} = x +x^2+x^3+x^4 +\cdots + x^n + \cdots = \dfrac{x}{1-x} \quad \text{ infinite geometric progression }\)

 

Therefore from the equation:
\(\displaystyle \int \dfrac{s\ dx}{x} = \dfrac{x}{1-x}\)


on differentiation s is found. For the equation becomes:
\(\begin{array}{rcll} \displaystyle \dfrac{s}{x} &=& \dfrac{x}{1-x}\left( \dfrac{1}{x}- \dfrac{(-1)}{1-x} \right) \\\\ &=& \dfrac{1}{1-x} + x(-1)(1-x)^{-2}(-1) \\\\ &=& \dfrac{1}{1-x} + \dfrac{x}{(1-x)^2} \\\\ &=& \dfrac{1-x+x}{(1-x)^2} \\\\ &=& \dfrac{1 }{(1-x)^2} \end{array}\)

 

thus there is produced:
\(\displaystyle s = \dfrac{x}{(1-x)^2} \\\)

So  \(\text{let $x = \dfrac{1}{2} $}:\)

 

\(\begin{array}{|rcll|} \hline s &=& \dfrac{ \dfrac{1}{2} } {\left(1-\dfrac{1}{2} \right)^2} \\\\ &=& \dfrac{ \dfrac{1}{2} } {\left( \dfrac{1}{2} \right)^2} \\\\ &=& \dfrac{ 1 } { \dfrac{1}{2} } \\\\ \mathbf{s} & \mathbf{=} & \mathbf{2} \\ \hline \end{array}\)


finally
\(\displaystyle 1 \cdot \dfrac {1}{2} + 2 \cdot \dfrac {1}{4} + 3 \cdot \dfrac {1}{8} + \dots + n \cdot \dfrac {1}{2^n} + \dotsb = 2\)

 

laugh

12 abr 2019