heureka

avatar
Nombre de usuarioheureka
Puntuación26367
Membership
Stats
Preguntas 17
Respuestas 5678

 #3
avatar+26367 
+3
7 may 2019
 #1
avatar+26367 
+4

Trigonometry

 

\(\begin{array}{|rcll|} \hline \tan{\theta} &=& \lambda\ \tan(A-\theta) \\ \boxed{\tan{\theta}=\dfrac{\sin(\theta)}{\cos(\theta)} \\ \tan(A-\theta) = \dfrac{\sin(A-\theta)}{\cos(A-\theta)} } \\ \dfrac{\sin(\theta)}{\cos(\theta)} &=& \lambda\ \left(\dfrac{\sin(A-\theta)}{\cos(A-\theta)} \right) \\ \boxed{ \sin(A-\theta) = \sin(A)\cos(\theta)-\cos(A)\sin(\theta) \\ \cos(A-\theta) = \cos(A)\cos(\theta)+\sin(A)\sin(\theta) } \\ \dfrac{\sin(\theta)}{\cos(\theta)} &=& \lambda\ \left(\dfrac{\sin(A)\cos(\theta)-\cos(A)\sin(\theta)} {\cos(A)\cos(\theta)+\sin(A)\sin(\theta)} \right) \\ \sin(\theta) \Big(\cos(A)\cos(\theta)+\sin(A)\sin(\theta) \Big) &=& \lambda\ \cos(\theta) \Big(\sin(A)\cos(\theta)-\cos(A)\sin(\theta) \Big) \\ \cos(A)\sin(\theta)\cos(\theta)+ \sin(A)\sin^2(\theta) &=& \lambda\ \cos^2(\theta)\sin(A)-\lambda\ \cos(A)\sin(\theta)\cos(\theta) \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta) &=& \lambda\ \cos^2(\theta)\sin(A)-\sin(A)\sin^2(\theta) \\ \boxed{ \cos^2(\theta) = 1-\sin^2(\theta) } \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta) &=& \lambda\ \Big(1-\sin^2(\theta) \Big) \sin(A)-\sin(A)\sin^2(\theta) \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta) &=& \lambda\ \sin(A)-(\lambda+1) \sin(A)\sin^2(\theta) \\ (\lambda+1)\cos(A)\sin(\theta)\cos(\theta)+(\lambda+1) \sin(A)\sin^2(\theta) &=& \lambda\ \sin(A) \\ (\lambda+1)\Big( \cos(A)\sin(\theta)\cos(\theta)+\sin(A)\sin^2(\theta) \Big) &=& \lambda\ \sin(A) \\ \boxed{\sin(\theta)\cos(\theta)=\dfrac{\sin(2\theta)}{2} \\ \sin^2(\theta) = \dfrac{1-\cos(2\theta)}{2} } \\ (\lambda+1)\Big( \cos(A)\dfrac{\sin(2\theta)}{2}+\sin(A) \Big(\dfrac{1-\cos(2\theta)}{2}\Big) \Big) &=& \lambda\ \sin(A) \\ (\lambda+1)\Big( \cos(A)\sin(2\theta)+\sin(A) \Big( 1-\cos(2\theta)\Big) \Big) &=& 2\lambda\ \sin(A) \\ (\lambda+1)\Big( \cos(A)\sin(2\theta)-\sin(A)\cos(2\theta) + \sin(A) \Big) &=& 2\lambda\ \sin(A) \\ \boxed{ \cos(A)\sin(2\theta)-\sin(A)\cos(2\theta) = \sin(2\theta-A) } \\ (\lambda+1)\Big( \sin(2\theta-A) + \sin(A) \Big) &=& 2\lambda\ \sin(A) \\ (\lambda+1)\sin(2\theta-A) +(\lambda+1)\sin(A) &=& 2\lambda\ \sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& 2\lambda\ \sin(A)-(\lambda+1)\sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& 2\lambda\ \sin(A)-\lambda\ \sin(A)- \sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& \lambda\ \sin(A)- \sin(A) \\ (\lambda+1)\sin(2\theta-A) &=& (\lambda -1) \sin(A)\\ \mathbf{(\lambda -1) \sin(A)} &=& \mathbf{(\lambda+1)\sin(2\theta-A)} \\ \hline \end{array}\)

 

laugh

7 may 2019
 #2
avatar+26367 
+2

Let \(z = 2 e^{(10 \pi i)/21}\)  and \(w = e^{(\pi i)/7}\).

Then what is \(|(z+w)^6|\),

the magnitude of \((z+w)^6\)?

 

\(\begin{array}{|rcll|} \hline z = 2 e^{i\left(\frac{10}{21} \pi \right) } && w = e^{i\left(\frac{\pi}{7} \right) } \\ \boxed{\frac{10}{21} \pi = \frac{7}{21}\pi + \frac{3}{21}\pi \\ = \frac{1}{3}\pi + \frac{1}{7}\pi } \\ z = 2 e^{i\left(\frac{1}{3}\pi + \frac{1}{7}\pi \right) } \\ z = 2 e^{i\left(\frac{\pi}{3} \right) }e^{i\left(\frac{\pi}{7} \right) } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline z+w &=& 2 e^{i\left(\frac{\pi}{3} \right) }e^{i\left(\frac{\pi}{7} \right) } + e^{i\left(\frac{\pi}{7} \right) } \\ &=& e^{i\left(\frac{\pi}{7} \right)} \left( 2 e^{i\left(\frac{\pi}{3} \right)}+1 \right) \\ && \boxed{ e^{i\left(\frac{\pi}{3} \right)} = \cos\left(\frac{\pi}{3} \right) + i\sin\left(\frac{\pi}{3} \right) \\ = \dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \\ 2e^{i\left(\frac{\pi}{3} \right)} =1+i\sqrt{3} } \\\\ &=& e^{i\left(\frac{\pi}{7} \right)} \left(1+i\sqrt{3} +1 \right) \\ &=& e^{i\left(\frac{\pi}{7} \right)} \left(2+i\sqrt{3} \right) \\\\ && \boxed{2+i\sqrt{3} = \sqrt{2^2+(\sqrt{3})^2} \cdot e^{i\cdot \arctan(\frac{\sqrt{3}}{2} ) } \\ = \sqrt{7} \cdot e^{i\cdot \arctan(\frac{\sqrt{3}}{2} ) } } \\\\ &=& \sqrt{7} \cdot e^{i\cdot \arctan(\frac{\sqrt{3}}{2} ) } e^{i\left(\frac{\pi}{7} \right)} \\ &=& \sqrt{7} \cdot e^{i\cdot \arctan(\frac{\sqrt{3}}{2} ) +i\left(\frac{\pi}{7} \right)} \\ &=& \sqrt{7} \cdot e^{i\cdot \arctan(\frac{\sqrt{3}}{2} + \frac{\pi}{7} ) } \\ \left(z+w \right)^6 &=& \left(\sqrt{7}\right)^6 \cdot e^{i\cdot 6\arctan(\frac{\sqrt{3}}{2} + \frac{\pi}{7} ) } \\ |\left(z+w \right)^6| &=& \left(\sqrt{7}\right)^6 \\ &=& 7^3 \\ \mathbf{|\left(z+w \right)^6|} &=& \mathbf{343} \\ \hline \end{array}\)

 

...Thank you, Alan...

 

laugh

6 may 2019