Let x be the airplane speed and y be the wind speed.
Because distance/time = speed......
\(x+y=\dfrac{2500}{3.75}\)
\(x-y=\dfrac{2500}{4.4}\)
Add up the 2 equations:
\(2x=\dfrac{2500}{3.75}+\dfrac{2500}{4.4}=1234\dfrac{84}{99}\\ x = 617\dfrac{4}{9}\text{miles/h}\)
\(617\dfrac{4}{9}+y=\dfrac{2500}{3.75}\\ \dfrac{5557}{9}+y=\dfrac{2000}{3}\\ y = \dfrac{6000}{9}-\dfrac{5557}{9}=49\dfrac{2}{9}\text{miles/h}\)
.