Note that ∠BAD=∠CAD=12⋅30∘=15∘.
Considering the interior angle sum of △ADC gives ∠ADC=120∘.
Using Sine Law in △ADC gives
10sin120∘=ADsin45∘AD=10√63
Considering the angles around point D gives ∠ADB=60∘. Considering the interior angle sum of △ABD gives ∠ABD=105∘.
Using Sine Law in △ABC gives
10sin105∘=ABsin45∘AB=10(√3−1)
Then, the area of △ABD is 12(AB)(AD)sin15∘=12(10(√3−1))⋅10√63⋅√6−√24=50(2√3−3)3.