I don't know all those but I do know how to do (d).
dydx=ddx(ln(x4)+ex)=ddx(4lnx)+ddx(ex)
=4ddx(lnx)+ddxex
=4x+ex
z0=euu=2x2dz0dx=dz0du×dudx← Chain rule=eu×4x=4xe2x2
You can see that I am differentiating z0 =e^2x^2 using chain rule.
dzdx=ddx(z0)+ddx(6)=4xe2x2
∴dpdx=dydx+dzdx=4x+ex+4xe2x2
.