http://www.mathsisfun.com/data/standard-deviation.html
Let x = 1-0.02 This is unnecessary but just for easier understanding.
\(\text{Original expression}\\ =\dfrac{2x^{10}}{x}\\ =2x^9\\ \text{Now back-substitute the values.}\\ =2(1-0.02)^9\\ =2\cdot(0.98)^9\\ =2\cdot0.83374776213\\ =1.66749552426\)
Welcome back, Guest! :D
\(\begin{array}{rll}3^{81x}&=&81^{3x}\\ 81x\cdot \log_33 &=& 3x\cdot\log_381\\ 81x&=&12x\end{array}\\ \mbox{The only solution is }x=0\)
2 + 2 = 4, isn't it?
Example:
2.653 x 3.332
estimated: 3 x 3 = 9
actual: 2.653 x 3.332 = 8.839796
Close enough, isn't it?
Multiply 100 to both the numerator and denominator.
\(\begin{array}{rl}&\dfrac{1}{1.01}\\=&\dfrac{100}{101}\end{array}\)
Exponents smaller than whole number, I bet you mean fractions and negative numbers.
\(\boxed{\color{red}m^{\frac{a}{n}}=\sqrt[n]{m^a}}\)
\(\boxed{\color{red}m^{-n}=\dfrac{1}{m^n}}\)