n the expansion of (ab + bc + ca)^{12}, find the coefficient of a^8 b^8 c^8.
L[a(b+c)+bc]12 12∑r=0(12r)(bc)12−r∗[a(b+c)]r 12∑r=0(12r)(bc)12−r∗ar(b+c)r 12∑r=0(12r)(bc)12−r∗ar[r∑t=0(rt)brct−r] 12∑r=0(12r)(bc)12−r∗ar[r∑t=0(rt)btcr−t]
Now I am only interested in the terms where abc are all to the power of 8 so r=8
(128)(bc)12−8∗a8[8∑t=0(8t)btc8−t] (128)b4c4∗a8[8∑t=0(8t)btc8−t] Soweneedt=4 (128)b4c4∗a8(84)b4c4 (128)(84)a8b8c8
The coefficiant will be 495*70 = 34650
just as guest already told you. 
L[a(b+c)+bc]^{12}\\~\\
\displaystyle \sum_{r=0}^{12}\binom{12}{r}(bc)^{12-r}* [a(b+c)]^{r}\\~\\
\displaystyle \sum_{r=0}^{12}\binom{12}{r}(bc)^{12-r}* a^r(b+c)^{r}\\~\\
\displaystyle \sum_{r=0}^{12}\binom{12}{r}(bc)^{12-r}* a^r\left [\displaystyle \sum_{t=0}^r\binom{r}{t}b^rc^{t-r}\right]\\~\\
\displaystyle \sum_{r=0}^{12}\binom{12}{r}(bc)^{12-r}* a^r\left [\displaystyle \sum_{t=0}^r\binom{r}{t}b^tc^{r-t}\right]\\~\\
\displaystyle \binom{12}{8}(bc)^{12-8}* a^8\left [\displaystyle \sum_{t=0}^8\binom{8}{t}b^tc^{8-t}\right]\\~\\
\displaystyle \binom{12}{8}b^4c^4* a^8\left [\displaystyle \sum_{t=0}^8\binom{8}{t}b^tc^{8-t}\right]\\~\\
So\;\; we\;\; need \;t=4\\~\\
\displaystyle \binom{12}{8}b^4c^4* a^8 \binom{8}{4}b^4c^{4}\\~\\
\displaystyle \binom{12}{8}\binom{8}{4} a^8 b^8c^{8}\\~\\