I do not know if guests answer is right or wrong, I have not checked.
Thanks for answering guest :)
Let
\(f(x)=x^3(ax^2+bx+c)\quad so\\ f(x)+2=x^3(ax^2+bx+c)+2\qquad (1)\\ f(x)+2=ax^5+bx^4+cx^3+2\\ \text{But also}\\~\\ f(x)+2=(x+1)^3(dx^2+ex+f)\qquad (2)\\ \text{By inspection I can see that }f=2\\ f(x)+2=(x+1)^3(dx^2+ex+2)\\ f(x)+2=(x^3+3x^2+3x+1)(dx^2+ex+2)\\ \text{The x term will be }6x+ex=(6+e)x\\ \text{ but the coefficient of x must be 0 so e=-6}\\~\\ \text{The x squared term will be }6x^2+3ex^2+dx^2=6x^2-18x^2+dx^2=(-12+d)x\\ \text{ but the coefficient of x squared must be 0 so d=12}\\ so\\ f(x)+2=(x+1)^3(dx^2+ex+f)\\ f(x)+2=(x+1)^3(12x^2-6x+2)\\ \text{expand etc} \)
The logic is good but you need to check for careless errors.
LaTex:
f(x)=x^3(ax^2+bx+c)\quad so\\
f(x)+2=x^3(ax^2+bx+c)+2\qquad (1)\\
f(x)+2=ax^5+bx^4+cx^3+2\\ \text{But also}\\~\\
f(x)+2=(x+1)^3(dx^2+ex+f)\qquad (2)\\
\text{By inspection I can see that }f=2\\
f(x)+2=(x+1)^3(dx^2+ex+2)\\
f(x)+2=(x^3+3x^2+3x+1)(dx^2+ex+2)\\
\text{The x term will be }6x+ex=(6+e)x\\
\text{ but the coefficient of x must be 0 so e=-6}\\~\\
\text{The x squared term will be }6x^2+3ex^2+dx^2=6x^2-18x^2+dx^2=(-12+d)x\\
\text{ but the coefficient of x squared must be 0 so d=12}\\
so\\
f(x)+2=(x+1)^3(dx^2+ex+f)\\
f(x)+2=(x+1)^3(12x^2-6x+2)\\
\text{expand etc}