Melody

avatar
Nombre de usuarioMelody
Puntuación118690
Membership
Stats
Preguntas 900
Respuestas 33647

-6
836
3
avatar+118690 
Melody  11 feb 2022
 #3
avatar+118690 
+2

Thanks guests :)

 

P = 5^{1/5} \cdot 25^{1/25} \cdot 125^{1/125} \cdot 625^{1/625} \dotsm

 

\(P = 5^{1/5} \cdot 25^{1/25} \cdot 125^{1/125} \cdot 625^{1/625} \dotsm\\ P = 5^{1/5} \cdot 5^{2/5^2} \cdot 5^{3/5^3} \cdot 5^{4/5^4} \dotsm\\ P = 5^{(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}\dotsm\\)} \\ log_5 P = {(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}\dotsm)} \\ log_5 P = {(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}\dotsm)} + {(\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}\dotsm)} +{(\frac{1}{5^3}+\frac{1}{5^4}+\frac{1}{5^5}\dotsm)+ \dots}\\ log_5 P =(\frac{1}{5}\div \frac{4}{5})+(\frac{1}{25}\div \frac{4}{5})+(\frac{1}{125}\div \frac{4}{5})+ \dots\\ log_5 P =(\frac{1}{5}\times \frac{5}{4})+(\frac{1}{25}\times\frac{5}{4})+(\frac{1}{125}\times\frac{5}{4})+ \dots\\ log_5 P =(\frac{1}{4})+(\frac{1}{20})+(\frac{1}{100})+ \dots\\ log_5 P =\frac{1}{4}\div \frac{4}{5}\\ log_5 P =\frac{1}{4}\div \frac{4}{5}\\ log_5 P =\frac{1}{4}\times \frac{5}{4}\\ log_5 P =\frac{5}{16}\\ P=5^{\frac{5}{16}}\\ P\approx 1.65359 \)

 

 

LaTex

P = 5^{1/5} \cdot 25^{1/25} \cdot 125^{1/125} \cdot 625^{1/625} \dotsm\\
P = 5^{1/5} \cdot 5^{2/5^2} \cdot 5^{3/5^3} \cdot 5^{4/5^4} \dotsm\\
P = 5^{(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}\dotsm\\)} \\
log_5 P = {(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}\dotsm)} \\

log_5 P = {(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}\dotsm)} 
+ {(\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}\dotsm)}
+{(\frac{1}{5^3}+\frac{1}{5^4}+\frac{1}{5^5}\dotsm)+ \dots}\\

log_5 P =(\frac{1}{5}\div \frac{4}{5})+(\frac{1}{25}\div \frac{4}{5})+(\frac{1}{125}\div \frac{4}{5})+ \dots\\
log_5 P =(\frac{1}{5}\times \frac{5}{4})+(\frac{1}{25}\times\frac{5}{4})+(\frac{1}{125}\times\frac{5}{4})+ \dots\\
log_5 P =(\frac{1}{4})+(\frac{1}{20})+(\frac{1}{100})+ \dots\\
log_5 P =\frac{1}{4}\div \frac{4}{5}\\
log_5 P =\frac{1}{4}\div \frac{4}{5}\\
log_5 P =\frac{1}{4}\times \frac{5}{4}\\
log_5 P =\frac{5}{16}\\
P=5^{\frac{5}{16}}\\
P\approx 1.65359

17 may 2022