Loading [MathJax]/jax/output/SVG/jax.js
 

Melody

avatar
Nombre de usuarioMelody
Puntuación118696
Membership
Stats
Preguntas 900
Respuestas 33647

-6
842
3
avatar+118696 
Melody  11 feb 2022
 #3
avatar+118696 
+2

Thanks guests :)

 

P = 5^{1/5} \cdot 25^{1/25} \cdot 125^{1/125} \cdot 625^{1/625} \dotsm

 

P=51/5251/251251/1256251/625P=51/552/5253/5354/54P=5(15+252+353+454)log5P=(15+252+353+454)log5P=(15+152+153)+(152+153+154)+(153+154+155)+log5P=(15÷45)+(125÷45)+(1125÷45)+log5P=(15×54)+(125×54)+(1125×54)+log5P=(14)+(120)+(1100)+log5P=14÷45log5P=14÷45log5P=14×54log5P=516P=5516P1.65359

 

 

LaTex

P = 5^{1/5} \cdot 25^{1/25} \cdot 125^{1/125} \cdot 625^{1/625} \dotsm\\
P = 5^{1/5} \cdot 5^{2/5^2} \cdot 5^{3/5^3} \cdot 5^{4/5^4} \dotsm\\
P = 5^{(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}\dotsm\\)} \\
log_5 P = {(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}\dotsm)} \\

log_5 P = {(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}\dotsm)} 
+ {(\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}\dotsm)}
+{(\frac{1}{5^3}+\frac{1}{5^4}+\frac{1}{5^5}\dotsm)+ \dots}\\

log_5 P =(\frac{1}{5}\div \frac{4}{5})+(\frac{1}{25}\div \frac{4}{5})+(\frac{1}{125}\div \frac{4}{5})+ \dots\\
log_5 P =(\frac{1}{5}\times \frac{5}{4})+(\frac{1}{25}\times\frac{5}{4})+(\frac{1}{125}\times\frac{5}{4})+ \dots\\
log_5 P =(\frac{1}{4})+(\frac{1}{20})+(\frac{1}{100})+ \dots\\
log_5 P =\frac{1}{4}\div \frac{4}{5}\\
log_5 P =\frac{1}{4}\div \frac{4}{5}\\
log_5 P =\frac{1}{4}\times \frac{5}{4}\\
log_5 P =\frac{5}{16}\\
P=5^{\frac{5}{16}}\\
P\approx 1.65359

17 may 2022