Registro
Ingresar
Nombre de usuario
Contraseña
Ingresar
olvidó su contraseña
Inicio
Foro
+0
Formulario
Matemáticas
Ayuda
números complejos
cálculo diferencial
cálculo diferencial
Ecuaciones
Gráficas de funciones
Algebra lineal
Teoría de números
pourcentages
Fonctions estándar
Probabilidad
Trigonometría
Conversión de unidades
Unidades
Sobre
Impreso
Política de privacidad
Términos de Servicio
Credits
Google+
Facebook
Email de contacto
MEMEG0D
Nombre de usuario
MEMEG0D
Puntuación
260
Membership
Stats
Preguntas
65
Respuestas
3
65 Questions
3 Answers
-1
3
1
+260
Geometry
What are the coordinates of the points where the graphs of f(x)=x^3 + x^2 - 3x + 5 and g(x) = x^3 + 2x^2 intersect?
Give your answer as a list of points separated by commas, with the points ordered such that their -coordinates
lee mas ..
●
MEMEG0D
22 sept 2024
0
2
1
+260
Algebra
Compute the sum
\frac{1}{\sqrt{36} + \sqrt{39}} + \frac{1}{\sqrt{36} + \sqrt{45}} + \frac{1}{\sqrt{39} +\sqrt{96}}
●
MEMEG0D
15 sept 2024
0
3
2
+260
Geometry
Let x and y be complex numbers. If $x + y =2$ and $x^3 + y^3 = 5$, then what is $x^2 + y^2$?
●
●
MEMEG0D
15 sept 2024
0
12
0
+260
Geometry
The circles $x^2 + y^2 = 4$ and $(x - 5)^2 + (y - 8)^2 = 60$ intersect in two points $A$ and $B.$ Find the distance $AB$.
MEMEG0D
15 sept 2024
0
11
0
+260
Algebra
Let $f(x)$ be a polynomial with integer coefficients. There exist distinct integers $p,$ $q,$ $r,$ $s,$ $t$ such that
f(p) = f(q) = f(r) = f(s) = 1
and $f(t) > 1.$ What is the smallest possible value of $f(t)?$
MEMEG0D
15 sept 2024
0
5
0
+260
Algebra
Let $f(x) = x^2 + bx + 12 - 3x + 10$ for all real numbers $x$. Find the greatest integer value of $b$ such that $-4$ is not in the range of $f(x)$.
MEMEG0D
15 sept 2024
0
12
0
+260
Algebra
Let S be the set of all real numbers of the form
a1/3 + a2/3^2 + a3/3^3 + ....
where a_i \in {0, 1, 2} for all i.
(a) Is the number 1/7 in the set S?
(b) Is the number 1/4 in the set S?
lee mas ..
MEMEG0D
15 sept 2024
0
1
1
+260
Geometry
Let P_1 P_2 P_3 \dotsb P_{10} be a regular polygon inscribed in a circle with radius $1.$ Compute
P_1 P_2 + P_2 P_3 + P_3 P_4 + \dots + P_9 P_{10} + P_{10} P_1
●
MEMEG0D
14 sept 2024
0
3
2
+260
Geometry
The area of a trapezoid is $80$. The length of one base is $16$ units greater than the other base, and one base of the trapezoid is $12$. Find the length of the median of the trapezoid.
●
●
MEMEG0D
14 sept 2024
0
7
0
+260
Geometry
Let $WXYZ$ be a trapezoid with bases $\overline{XY}$ and $\overline{WZ}$. In this trapezoid, $\angle ZXW = 120^\circ$, $\angle XWZ = 60^\circ$, and $\angle XYZ = 120^\circ$. Find $\angle YXZ$, in degrees.
MEMEG0D
14 sept 2024
«
último
5
4
2
1
»
#1
+260
0
The answer is 19.
MEMEG0D
3 hours ago