¿como comprobar el número áureo?
en wikipedia ponen la siguiente expresión
Sucede que desarrollaron el binomio al cuadrado, es decir, tomaron la expresión
$${\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)}^{{\mathtt{2}}} = \left(\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)\right)$$ y realizaron propiedad distributiva
$$\left(\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right)\right)$$ que al desarrollar da $${\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{1}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{5}}$$ lo cual por último termina dando
$${\mathtt{6}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right)$$