+0

# ¿como comprobar el número áureo?

0
338
1

¿como comprobar el número áureo?

en wikipedia ponen la siguiente expresión

pero no se porque $${\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)}^{{\mathtt{2}}}$$ termina siendo 1 + 2√5 + 5
24 sept. 2014

#1
0

Sucede que desarrollaron el binomio al cuadrado, es decir, tomaron la expresión

$${\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)}^{{\mathtt{2}}} = \left(\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)\right)$$  y realizaron propiedad distributiva

$$\left(\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right)\right)$$ que al desarrollar da $${\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{1}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{5}}$$  lo cual por último termina dando

$${\mathtt{6}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right)$$

26 sept. 2014