+0  
 
0
718
1
avatar

¿como comprobar el número áureo?

en wikipedia ponen la siguiente expresión 

\varphi^2 = \frac{ ( 1 + \sqrt{5} )^2 }{2^2} = \frac{1 + 2\sqrt{5} + 5}{2^2} = \frac{6 + 2\sqrt{5}}{2^2} = \frac{3 + \sqrt{5}}{2}
\varphi + 1 = \frac{1 + \sqrt{5}}{2} + \frac{2}{2} = \frac{3 + \sqrt{5}}{2}
pero no se porque  $${\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)}^{{\mathtt{2}}}$$ termina siendo 1 + 2√5 + 5
 24 sept 2014
 #1
avatar
0

Sucede que desarrollaron el binomio al cuadrado, es decir, tomaron la expresión

 

$${\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)}^{{\mathtt{2}}} = \left(\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}\right)\right)$$  y realizaron propiedad distributiva 

 

$$\left(\left({\mathtt{1}}{\mathtt{\,\times\,}}{\mathtt{1}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{1}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right)\right)$$ que al desarrollar da $${\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{5}} = {\mathtt{1}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right){\mathtt{\,\small\textbf+\,}}{\mathtt{5}}$$  lo cual por último termina dando 

$${\mathtt{6}}{\mathtt{\,\small\textbf+\,}}\left({\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}\right)$$

 26 sept 2014

4 Usuarios en línea

avatar
avatar