Take logs of both sides: ln(44118) = ln(3b)
From a property of logs we have ln(3b) = b*ln(3) so ln(44118) = b*ln(3); hence b = ln(44118)/ln(3)
$${\mathtt{b}} = {\frac{{ln}{\left({\mathtt{44\,118}}\right)}}{{ln}{\left({\mathtt{3}}\right)}}} \Rightarrow {\mathtt{b}} = {\mathtt{9.734\: \!665\: \!497\: \!315\: \!512\: \!4}}$$
Because you have arithmetic mod 65537, you could find other answers by adding multiples of 65537 on to 44118 first. For example
$${\mathtt{b2}} = {\frac{{ln}{\left({\mathtt{44\,118}}{\mathtt{\,\small\textbf+\,}}{\mathtt{65\,537}}\right)}}{{ln}{\left({\mathtt{3}}\right)}}} \Rightarrow {\mathtt{b2}} = {\mathtt{10.563\: \!412\: \!108\: \!297\: \!925\: \!2}}$$
$$\left({{\mathtt{3}}}^{\left({\frac{{ln}{\left({\mathtt{44\,118}}{\mathtt{\,\small\textbf+\,}}{\mathtt{65\,537}}\right)}}{{ln}{\left({\mathtt{3}}\right)}}}\right)}\right) {mod} \left({\mathtt{65\,537}}\right) = {\mathtt{44\,117.999\: \!999\: \!999\: \!96}}$$
(A small numerical error creeping in there!)