Let h be the height of the pole and d be the distance from the building.
tan(28) = h/d ...(1)
tan(14) = (h-60)/d ...(2)
Rewrite (2) as tan(14) = h/d - 60/d ...(3)
Use (1) in (3): tan(14) = tan(28) - 60/d ...(4)
Rearrange (4) to get d = 60/(tan(28)-tan(14))
$${\mathtt{d}} = {\frac{{\mathtt{60}}}{\left(\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{28}}^\circ\right)}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}{\left({\mathtt{14}}^\circ\right)}\right)}} \Rightarrow {\mathtt{d}} = {\mathtt{212.478\: \!562\: \!245\: \!221\: \!509\: \!7}}$$
or d ≈ 212.5 ft