$$\left({{\mathtt{p}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\frac{{{\mathtt{4}}}^{{\mathtt{2}}}}{\left({\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{p}}\right)}}\right){\mathtt{\,\times\,}}{\mathtt{1\,293}} = {\frac{{\mathtt{0.018\: \!5}}{\mathtt{\,\times\,}}{\mathtt{360}}}{{\mathtt{0.2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{27.44}}{\mathtt{\,\times\,}}{\mathtt{1\,293}}}{{\mathtt{4\,758}}}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{p}} = {\frac{{\mathtt{1\,616\,011}}{\mathtt{\,\times\,}}\left({\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}{\left({\mathtt{153\,802\,350}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{58\,211\,509\,993\,402\,437\,011\,390\,669}}}}}{\left({\mathtt{3\,375}}{\mathtt{\,\times\,}}{{\mathtt{683\,566}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\left({\frac{{\sqrt{{\mathtt{58\,211\,509\,993\,402\,437\,011\,390\,669}}}}}{\left({\mathtt{3\,375}}{\mathtt{\,\times\,}}{{\mathtt{683\,566}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)\\
{\mathtt{p}} = {\left({\frac{{\sqrt{{\mathtt{58\,211\,509\,993\,402\,437\,011\,390\,669}}}}}{\left({\mathtt{3\,375}}{\mathtt{\,\times\,}}{{\mathtt{683\,566}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}\left({\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1\,616\,011}}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}{\left({\mathtt{153\,802\,350}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{58\,211\,509\,993\,402\,437\,011\,390\,669}}}}}{\left({\mathtt{3\,375}}{\mathtt{\,\times\,}}{{\mathtt{683\,566}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\\
{\mathtt{p}} = {\left({\frac{{\sqrt{{\mathtt{58\,211\,509\,993\,402\,437\,011\,390\,669}}}}}{\left({\mathtt{3\,375}}{\mathtt{\,\times\,}}{{\mathtt{683\,566}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1\,616\,011}}}{\left({\mathtt{153\,802\,350}}{\mathtt{\,\times\,}}{\left({\frac{{\sqrt{{\mathtt{58\,211\,509\,993\,402\,437\,011\,390\,669}}}}}{\left({\mathtt{3\,375}}{\mathtt{\,\times\,}}{{\mathtt{683\,566}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\mathtt{4}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{p}} = {\mathtt{\,-\,}}{\mathtt{1.002\: \!626\: \!759\: \!755\: \!284}}{\mathtt{\,-\,}}{\mathtt{1.727\: \!501\: \!105\: \!285\: \!170\: \!6}}{i}\\
{\mathtt{p}} = {\mathtt{\,-\,}}{\mathtt{1.002\: \!626\: \!759\: \!755\: \!284}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.727\: \!501\: \!105\: \!285\: \!170\: \!6}}{i}\\
{\mathtt{p}} = {\mathtt{2.005\: \!253\: \!519\: \!510\: \!568}}\\
\end{array} \right\}$$
.