I = V/R
R1=V1I1=500V0.025A=20kΩ
I halve the length of the wire, hence the resistance R1.
I2=V2R2=175V10kΩ=17.5mA
I apply the voltageV2 to both halves of the wire, thus halving the resistance R1.
I3=V2R3=175V5kΩ=35mA in both wire halves together.
!
x+4x+5=x−32+x+7510(x+4)10(x+5)=(x+5)(x−3)+(x+5)(x+7)10(x+5)10x+40=x2+2x−15+x2+12x+352x2+4x−20=0x2−2x−10=0x1,2=1±√1+10x∈{−2.3166,4.3166}
What is DE ?
¯BC2=¯AB2+¯AC2−2⋅¯AB⋅¯AC⋅cos αα=acos (¯AB2+¯AC2−¯BC22⋅¯AB⋅¯AC)α=acos (132+192−322⋅13⋅19)=acos (1.0546 ...)α= unreal
The segments 3, 13 and 19 do not form a closed triangle.
Die Dichte des Holzes sei ρ. Dann gilt
203cm3⋅ρ⋅g=202⋅17cm3⋅1gcm3⋅gρ=202⋅17g203cm3ρ=0,85g/cm3
Der Preis der Ware sei x. Dann gilt
0,96x−0,95x=2,50,01x=2,5x=2,50,01=250
Die Ware kostet 250€.
Wie ist hier die Eingabelogik: tan ß = 1 | tan^-1 ß = 45° ?
Hallo calypso1, betätige die Felder wie folgt:
∘Degatan1=Ergebnis:tan−1(1)=45∘
12,5km⋅th+15,5km⋅th=140km28km⋅th=140kmt=140km⋅h28kmt=5h
Find WX.
hyz=√r2−22huv=√r2−32hyz−huv=2√r2−22−√r2−32=2r=√1454=3.0104 (WolframAlpha)
hyz=2.25huv=0.2500hwx=(2.25+0.250)/2=1.25¯WX=2√r2−h2wx=2√3.01042−1.252¯WX=5.4772
May 18 2024
https://web2.0calc.com/questions/geometry_18743#r1
Find a + b.
mAB=2=yb−yaxb−xa=b2−a2b−a=(b+a)(b−a)b−a=b+aa+b=2