geno3141

avatar
Nombre de usuariogeno3141
Puntuación23252
Membership
Stats
Preguntas 1
Respuestas 7089

 #1
avatar+23252 
+5
10 nov 2014
 #1
avatar+23252 
+10

Given two points:  (x1, y1) and (x2, y2)

I believe that the midpoint between the two points will be found by moving the average (mean) distance in the x-direction and the average (mean) distance in the y-direction.

The average (mean) between x1 and x2 is (x1 + x2)/2; the average (mean) between y1 and y2 is (y1 + y2)/2.

Therefore, I believe that the midpoint of the two points (x1, y1) and (x2, y2) is ( (x1 + x2)/2, (y1 + y2)/2 ).

To prove that this is correct, I rely upon a theorem from geometry that states that any line segment has only one midpoint.

Now, I plan to show that the point ( (x1 + x2)/2, (y1 + y2)/2 ) is equally distant from the two endpoints, making it a midpoint (the theorem from geometry guarantees that it is the only midpoint).

Distance from (x1, y1 ) to ( (x1 + x2)/2, (y1 + y2)/2 )  is

 √[ (x1 - (x1 + x2)/2 )² + (y1 - (y1 + y2)/2 )² ]                       (using the distance formula)

=  √[ (2x1/2 - (x1 + x2)/2 )² + (2y1/2 - (y1 + y2)/2 )² ]          (common denominator of 2)

=  √[ (2x1/2 - x1/2 - x2/2 )² + (2y1/2 - y1/2 - y2/2 )² ]          (distributive property)

=  √[ (x1/2 - x2/2)² + (y1/2 - y2/2 )² ]                                  (simplifying)

Similarly,  distance from (x2, y2 ) to ( (x1 + x2)/2, (y1 + y2)/2 )  is

 √[ (x2 - (x1 + x2)/2 )² + (y2 - (y1 + y2)/2 )² ]                       (using the distance formula)

=  √[ (2x2/2 - (x1 + x2)/2 )² + (2y2/2 - (y1 + y2)/2 )² ]          (common denominator of 2)

=  √[ (2x2/2 - x1/2 - x2/2 )² + (2y2/2 - y1/2 - y2/2 )² ]          (distributive property)

=  √[ (x2/2 - x1/2)² + (y2/2 - y1/2 )² ]                                   (simplifying)

Since (x1/2 - x2/2)² = (x2/2 - x1/2)²  and  (y1/2 - y2/2 )² = (y2/2 - y1/2 )², 

    (you can check that by multiplying them out -- FOIL)

( (x1 + x2)/2. (y1 + y2)/2 ) is a midpoint (and the only midpoint).

10 nov 2014