1) When x - 4 ≤ 0, then |x - 4| = -(x - 4) = -x + 4 (when x ≤ 4)
2) When x - 4 ≥ 0, then |x - 4| = x - 4 (when x ≥ 4)
3) When x + 4 ≤ 0, then |x + 4| = -(x + 4) = -x - 4 (when x ≤ -4)
4) When x + 4 ≥ 0, then |x + 4| = x + 4 (when x ≥ -4)
When x ≤ -4, use both lines 1 and 3 above: |x - 4| + |x + 4| ≤ 10
---> -x + 4 + -x - 4 ≤ 10
---> -2x ≤ 10
---> x ≥ -5 ---> -5 ≤ x ≤ -4
When x ≥ -4 and x ≤ 4, use both lines 1 and 4 above: |x - 4| + |x + 4| ≤ 10
---> -x + 4 + x + 4 ≤ 10
---> 8 ≤ 10
Since 8 ≤ 10 for all values in this range ---> -4 ≤ x ≤ 4
When x ≥ 4, use both lines 2 and 4 above: |x - 4| + |x + 4| ≤ 10
---> x - 4 + x + 4 ≤ 10
---> 2x ≤ 10
---> x ≤ 5 ---> 4 ≤ x ≤ 5
Combining these three answer: -5 ≤ x ≤ 5