This looks hard but I will give it a try.
\(\text{Let }x=\log\left(e^{(1+2i)}\right)\\ 10^x= e^{1+2i}\\ 10^x=e\times (e^i)^2\)
\(e^{i\pi}+1=0\\ (e^i)^\pi + 1=0\\ (e^i)^\pi=-1\\ e^i=(-1)^{\frac{1}{\pi}}\)
\(10^x=e\times (-1)^{\frac{2}{\pi}}\\ 10^x = e\times (1)^{\frac{1}{\pi}}\\ 10^x = e\\ x = \log e\)
.