Melody

avatar
Nombre de usuarioMelody
Puntuación118613
Membership
Stats
Preguntas 900
Respuestas 33641

-5
821
3
avatar+118613 
Melody  11 feb 2022
 #2
avatar+118613 
+2

 

How many integers a from 1 to 1000 are there such that \(a^{100}-1\) is divisible by 1000?

 

\(\frac{a^{100}-1}{1000}=N\qquad where \qquad N\in (intergers \ge0)\)

 

My first thought was ... what possibilities are there for the last digit.

The last digit of a^100  must be 1 for any possible 'a' to be considered.

 

For convenience I will call the last digit k

 

Only last digit displayed

k^1 k^2k^3k^4

k^5

all have

a pattern now

k^100

from pattern

0000 0
111 1
248626
397131
464646
555555
66   6666
793171
842686
919191

 

Since k^100 must end in 1, k must end in 1,3, 7 or 9

But what about the other digits ???

 

\(\frac{a^{100}-1}{1000}=N\qquad where \qquad N\in (intergers \ge0)\\ \)

I am going to let a=(10x+k)   I know that k must be  1,3,7, or 9 but I am not sure about restrictions on x

so using the binomial expansion I have

\((10x+k)^{100}=\displaystyle\sum_{r=0}^{100}\;(10k)^r(k)^{100-r}\)

 

Since I want to know if this -1 is divisable by 1000 I only care about terms that are not multiples of 1000, that is not many terms.

\((10x+k)^{100}\\=\displaystyle\sum_{r=0}^{100}\;(10k)^r(k)^{100-r}\\ =\binom{100}{0}(10x)^0(k)^{100}\;+\;\binom{100}{1}(10x)^1(k)^{99}\;+\;\binom{100}{2}(10x)^2(k)^{98}\;+\;\dots\\ =k^{100}+100(10x)(k)^{99}\;+\;4950(100x^2)(k)^{98}\;+\;\dots\\ =k^{100}+1000x*(k)^{99}\;+\;495000x^2(k)^{98}\;+\;\dots\\ =k^{100}+\;\dots\\\)

 

So only k, which is the last digit matters.  so long as k^100 ends in 1 then  \((10x+k)^{100} -1 \)   will be divisable by 1000

So a can be any number at all that ends in 1,3,7,9

 

There are 1000 numbers between 1 and 1000

10X<1000 so

X<100

There are 100 numbers that end in 1

100 that end in 3

100 that end in 7 and 

100 that end in 9

 

So there are 400 numbers altogether that meet the requirements.     Just as our guest already determined. 

10 may 2019