Registro
Ingresar
Nombre de usuario
Contraseña
Ingresar
olvidó su contraseña
Inicio
Foro
+0
Formulario
Matemáticas
Ayuda
números complejos
cálculo diferencial
cálculo diferencial
Ecuaciones
Gráficas de funciones
Algebra lineal
Teoría de números
pourcentages
Fonctions estándar
Probabilidad
Trigonometría
Conversión de unidades
Unidades
Sobre
Impreso
Política de privacidad
Términos de Servicio
Credits
Google+
Facebook
Email de contacto
MEMEG0D
Nombre de usuario
MEMEG0D
Puntuación
260
Membership
Stats
Preguntas
65
Respuestas
3
65 Questions
3 Answers
0
4
0
+260
Number Theory
A four-digit hexadecimal integer is written on a napkin such that the units digit is illegible. The first three digits are $7$, $D$, and $3$. If the integer is a multiple of $25_{10}$, what is the units digit?
MEMEG0D
28 oct 2024
0
6
1
+260
Algebra
Find the sum of all positive integers less than 1000 ending in 3 or 4 or 6 or 9.
●
MEMEG0D
24 oct 2024
0
3
1
+260
Algebra
In a geometric sequence, the 23rd term is 16 and the 24th term is 1/4. What is the 30th term?
●
MEMEG0D
24 oct 2024
0
1
1
+260
Geometry
In triangle $PQR,$ $M$ is the midpoint of $\overline{QR}.$ Find $PM.$
PQ = 5, PR = 8, QR = 11
●
MEMEG0D
18 oct 2024
0
3
1
+260
Geometry
In right triangle $ABC,$ $\angle C = 90^\circ$. Median $\overline{AM}$ has a length of 1, and median $\overline{BN}$ has a length of 1. What is the length of the hypotenuse of the triangle?
●
MEMEG0D
18 oct 2024
0
6
0
+260
Geometry
In rectangle $WXYZ$, $A$ is on side $\overline{WX}$, $B$ is on side $\overline{YZ}$, and $C$ is on side $\overline{XY}$. If $AX = 15$, $BY = 20$, $\angle ACB= 60^\circ$, and $CY = 3 \cdot CX$, then find $AB$.
MEMEG0D
18 oct 2024
0
3
0
+260
Geometry
Points $A$ and $B$ are on side $\overline{YZ}$ of rectangle $WXYZ$ such that $\overline{WA}$ and $\overline{WB}$ trisect $\angle ZWX$. If $WX = 2$ and $XY = 3$, then what is the area of rectangle $WXYZ$?
MEMEG0D
18 oct 2024
0
4
1
+260
Number Theory
You have a total supply of $1000$ pieces of candy, and an empty vat. You also have a machine that can add exactly $5$ pieces of candy per scoop to the vat, and another machine that can remove exactly $3$ pieces of candy with a different scoop from
lee mas ..
●
MEMEG0D
14 oct 2024
0
5
0
+260
Algebra
Simplify \dfrac{1}{\sqrt2+sqrt3}+\dfrac{1}{\sqrt2-sqrt3}.
MEMEG0D
9 oct 2024
0
5
0
+260
Algebra
Find all ordered pairs x, y of real numbers such that x+y=10 and x^2+y^2=64.
For example, to enter the solutions (2, 4) and (-3, 9), you would enter "(2,4),(-3,9)" (without the quotation marks).
MEMEG0D
9 oct 2024
«
último
5
4
2
1
»
#1
+260
0
The answer is 19.
MEMEG0D
3 hours ago