Since tan(2x) = [2tan(x)] / [1 - tan²(x)]
---> cot(2x) = [1 - tan²(x)] / [2tan(x)]
---> cot(4x) = [1 - tan²(2x)] / [2tan(2x)]
---> 4cot(4x) = 2[1 - tan²(2x)] / [tan(2x)]
= 2[ 1 - ( 2tan(x) / [1 - tan²(x)] )² ] / [ 2tan(x) / (1 - tan²(x) ) ]
= 2 / [ 2tan(x) / ( 1 - tan²(x) ) ] - 2( 2tan(x) / [1 - tan²(x)] )² /[ 2tan(x) / ( 1 - tan²(x) ) ]
= 2 · ( 1 - tan²(x) ) / 2tan(x) - 2( 2tan(x) / [1 - tan²(x)] )² · ( 1 - tan²(x) ) / ( 2tan(x) )
= ( 1 - tan²(x) ) / tan(x) - 2( 2tan(x) / [1 - tan²(x)] )
= ( 1 - tan²(x) ) / tan(x) - ( 4tan(x) / [1 - tan²(x)] )
= 2cot(2x) - 2tan(2x)
----------------------------------------------------
Because:
2cot(2x) = [1 - tan²(x)] / [tan(x)]
2tan(2x) = [4tan(x)] / [1 - tan²(x)]