Each row of pascal's triangle is symmetrical about the centre so the row that has 3c, 2c, c also has c, 2c, 3c
I think this will be easier to work with
\(\binom{n}{r}=c\qquad \binom{n}{r+1}=2c\qquad \binom{n}{r+2}=3c\)
\(\binom{n}{r}=\frac{n!}{r!*(n-r)!}\\~\\ \binom{n}{r+1}=\frac{n!}{r!*(r+1)\;\;*\frac{(n-r)!}{n-r}}=2\binom{n}{r}\\~\\ \qquad \frac{n!}{r!\;\;*(n-r)!}*\frac{(n-r)}{r+1}=2\binom{n}{r}\\~\\ \qquad \binom{n}{r}*\frac{(n-r)}{r+1}=2\binom{n}{r}\\~\\ \qquad \frac{(n-r)}{r+1}=2\\~\\ \qquad (n-r)=2r+2\\~\\ \qquad n=3r+2\\~\\\)
\(\binom{n}{r}=\frac{n!}{r!*(n-r)!}\\~\\ \binom{n}{r+2}=\frac{n!}{r!*(r+1)(r+2)\;\;*\frac{(n-r)!}{(n-r)(n-r-1)}}=3\binom{n}{r}\\~\\ \qquad \frac{n!}{r!\;\;*(n-r)!}*\frac{(n-r)(n-r-1)}{(r+1)(r+2)}=3\binom{n}{r}\\~\\ \qquad \binom{n}{r}*\frac{(n-r)(n-r-1)}{(r+1)(r+2)}=3\binom{n}{r}\\~\\ \qquad \frac{(3r+2-r)(3r+2-r-1)}{(r+1)(r+2)}=3\\~\\ \qquad \frac{(2r+2)(2r+1)}{(r+1)(r+2)}=3\\~\\ \qquad 4r^2+6r+2=3(r^2+3r+2)\\~\\ \qquad r^2-3r-4=0\\ \qquad(r-4)(r+1)=0\\ \qquad \text{r is positive so r=4}\\ n=3r+2\\ so \\ n=14\\ check\\ \binom{14}{4}=1001\\ \binom{14}{5}=2002\\ \binom{14}{6}=3003 \)
LaTex:
\binom{n}{r}=\frac{n!}{r!*(n-r)!}\\~\\
\binom{n}{r+1}=\frac{n!}{r!*(r+1)\;\;*\frac{(n-r)!}{n-r}}=2\binom{n}{r}\\~\\
\qquad \frac{n!}{r!\;\;*(n-r)!}*\frac{(n-r)}{r+1}=2\binom{n}{r}\\~\\
\qquad \binom{n}{r}*\frac{(n-r)}{r+1}=2\binom{n}{r}\\~\\
\qquad \frac{(n-r)}{r+1}=2\\~\\
\qquad (n-r)=2r+2\\~\\
\qquad n=3r+2\\~\\
\binom{n}{r}=\frac{n!}{r!*(n-r)!}\\~\\
\binom{n}{r+2}=\frac{n!}{r!*(r+1)(r+2)\;\;*\frac{(n-r)!}{(n-r)(n-r-1)}}=3\binom{n}{r}\\~\\
\qquad \frac{n!}{r!\;\;*(n-r)!}*\frac{(n-r)(n-r-1)}{(r+1)(r+2)}=3\binom{n}{r}\\~\\
\qquad \binom{n}{r}*\frac{(n-r)(n-r-1)}{(r+1)(r+2)}=3\binom{n}{r}\\~\\
\qquad \frac{(3r+2-r)(3r+2-r-1)}{(r+1)(r+2)}=3\\~\\
\qquad \frac{(2r+2)(2r+1)}{(r+1)(r+2)}=3\\~\\
\qquad 4r^2+6r+2=3(r^2+3r+2)\\~\\
\qquad r^2-3r-4=0\\
\qquad(r-4)(r+1)=0\\
\qquad \text{r is positive so r=4}\\
n=3r+2\\
so \\
n=14\\
check\\
\binom{14}{4}=1001\\
\binom{14}{5}=2002\\
\binom{14}{6}=3003