$${\frac{{\mathtt{8}}}{{\mathtt{8}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}} = {\frac{{\mathtt{5}}}{{\mathtt{8}}}}$$
$$\left({\frac{{\mathtt{4}}}{{\mathtt{8}}}}\right){\mathtt{\,\times\,}}\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right){\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{5}}}}\right) = {\frac{{\mathtt{8}}}{{\mathtt{120}}}} = {\frac{{\mathtt{4}}}{{\mathtt{60}}}} = {\frac{{\mathtt{2}}}{{\mathtt{30}}}} = {\frac{{\mathtt{1}}}{{\mathtt{15}}}}$$
$${\mathtt{55}}{\mathtt{\,\times\,}}{\mathtt{22}} = {\mathtt{1\,210}}{\mathtt{\,\small\textbf+\,}}{\mathtt{69}} = {\mathtt{1\,279}}{\mathtt{\,-\,}}{\mathtt{5.3}} = {\mathtt{1\,273.7}}$$
La respuesta es 2
Debes poner este signo para fracción /
$${\mathtt{1}}\%{\mathtt{\,\times\,}}{\mathtt{480}} = {\frac{{\mathtt{480}}}{{\mathtt{100}}}} = {\mathtt{4.8}}$$
si n es par.
si n es impar.
No es lo mismo que $${\mathtt{\,-\,}}\left({{\mathtt{a}}}^{{\mathtt{n}}}\right)$$ porque el exponente está dentro del paréntesis y esto no le influye al signo negativo