√[ 4 + √(16 + 16a) ] + √[ 1 + √(1 + a) ] = 6
√[ 4 + √(16 + 16a) ] + √[ 1 + √(1 + a) ] = 6
=> √[ 4 + √[16(1 + a) ] ] + √[ 1 + √(1 + a) ] = 6
=> √[ 4 + √16·√(1 + a) ] + √[ 1 + √(1 + a) ] = 6
=> √[ 4 + 4·√(1 + a) ] + √[ 1 + √(1 + a) ] = 6
=> √[ 4(1 + √(1 + a) ) ] + √[ 1 + √(1 + a) ] = 6
=> √4·√[ 1 + √(1 + a) ] + √[ 1 + √(1 + a) ] = 6
=> 2√[ 1 + √(1 + a) ] + √[ 1 + √(1 + a) ] = 6
=> 3√[ 1 + √(1 + a) ] = 6
=> √[ 1 + √(1 + a) ] = 2 (divide both sides by 3)
=> 1 + √(1 + a) = 4 (square both sides)
=> √(1 + a) = 3 (subtract 3 from both sides)
=> 1 + a = 9 (square both sides)
=> a = 8
log1/39 = x ---> (1/3)x = 9 ---> (3-1)x = 32 ---> 3-x = 32
---> -x = 2 ---> x = -2