(x + y)^2 = (x + y)(x + y) = x² + xy + xy + y² = x² + 2xy + y²
(x + y)^3 = (x + y)(x + y)(x +y) = (x + y)(x² + 2xy + y²) = x³ + 2x²y + xy² + x²y + 2xy² + y³ = x³ + 3x²y + 3xy²+ y³
(x + y)^4 = (x + y)(x + y)(x +y)(x + y) = (x + y)(x³ + 3x²y + 3xy²+ y³) = x^4 + 3x³y + 3x²y² + xy³ + x³y + 3x²y² + 3xy³ + y^4 = x^4 + 4x³y + 6x²y² + 4xy³ + y^4
Look at the coefficients:
(x + y)^2 --> 1 2 1
(x + y)^3 --> 1 3 3 1
(x + y)^4 --> 1 4 6 4 1
Can you find the pattern? You may want to look up "Pascal's Triangle" for a fuller explanation.
If you're still confused, ask again ...